ARMWARE RFC Archive <- RFC Index (6501..6600)

RFC 6546

Obsoletes RFC 6046

Internet Engineering Task Force (IETF)                       B. Trammell
Request for Comments: 6546                                    ETH Zurich
Obsoletes: 6046                                               April 2012
Category: Standards Track
ISSN: 2070-1721

      Transport of Real-time Inter-network Defense (RID) Messages
                             over HTTP/TLS

Abstract

   The Incident Object Description Exchange Format (IODEF) defines a
   common XML format for document exchange, and Real-time Inter-network
   Defense (RID) defines extensions to IODEF intended for the
   cooperative handling of security incidents within consortia of
   network operators and enterprises.  This document specifies an
   application-layer protocol for RID based upon the passing of RID
   messages over HTTP/TLS.

Status of This Memo

   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc6546.

Copyright Notice

   Copyright (c) 2012 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Trammell                     Standards Track                    [Page 1]



RFC 6546                      RID Transport                   April 2012

1.  Introduction

   The Incident Object Description Exchange Format (IODEF) [RFC5070]
   describes an XML document format for the purpose of exchanging data
   between Computer Security Incident Response Teams (CSIRTs) or those
   responsible for security incident handling for service providers
   (SPs).  The defined document format provides a simple way for CSIRTs
   to exchange data in a way which can be easily parsed.

   IODEF defines a message format, not a protocol, as the sharing of
   messages is assumed to be out of scope in order to allow CSIRTs to
   exchange and store messages in a way most suited to their established
   incident-handling processes.  However, Real-time Inter-network
   Defense (RID) [RFC6545] does require a specification of a protocol to
   ensure interoperability among members in a RID consortium.  This
   document specifies the transport of RID messages within HTTP
   [RFC2616] Request and Response messages over TLS [RFC5246] (herein,
   HTTP/TLS).  Note that any IODEF message may also be transported using
   this mechanism, by sending it as a RID Report message.

1.1.  Changes from RFC 6046

   This document contains the following changes with respect to its
   predecessor [RFC6046]:

   o  The status of the document is Standards Track.

   o  The document is updated to refer to the updated RID specification,
      [RFC6545], where appropriate.

   o  Language regarding the use of HTTP/1.1 and TCP ports for RID
      transport is clarified.

   o  The RID-Callback-Token entity header field is added to allow
      matching of RID replies during callback, independent of the
      content of the underlying RID message.

   o  The minimum required version of TLS is upgraded to 1.1, and the
      minimum recommended version to 1.2.

   o  Language regarding PKI for RID over HTTPS is clarified, and
      updated to refer to [RFC6125].

   This document obsoletes [RFC6046] and moves it to Historic status.

Trammell                     Standards Track                    [Page 2]



RFC 6546                      RID Transport                   April 2012

2.  Terminology and Normative Sections

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

   RID systems participating in a consortium are required to fully
   implement the protocol in Section 3 in order to interoperate within
   the consortium; the remainder of this document is informative and
   provides helpful background or explanatory information.

3.  Transmission of RID Messages over HTTP/TLS

   This section specifies the details of the transport of RID messages
   [RFC6545] over HTTP/TLS.  In this arrangement, each RID server is
   both an HTTP/TLS server and an HTTP/TLS client.  When a RID message
   is sent, the sending RID system connects to the receiving RID system
   and sends the message, optionally receiving a message in reply.  Each
   RID system MUST be prepared to accept HTTP/TLS connections from any
   RID peer with which it communicates, in order to support callback for
   delayed replies (see below).

   BCP 56 [RFC3205] contains a number of important considerations when
   using HTTP for application protocols.  These include the size of the
   payload for the application, whether the application will use a web
   browser, whether the protocol should be defined on a port other than
   80, and if the security provided through HTTP/TLS suits the needs of
   the new application.

   It is acknowledged within the scope of these concerns that HTTP/TLS
   is not ideally suited for RID transport, as the former is a client-
   server protocol and the latter a message-exchange protocol; however,
   the ease of implementation of RID systems over HTTP/TLS outweighs
   these concerns.  Consistent with BCP 56, RID systems listen for TCP
   connections on port 4590 (see Section 5).  Every RID system
   participating in a consortium SHOULD listen for HTTP/TLS connections
   on the assigned port.  RID systems MAY be configurable to listen on
   ports other than the well-known port; this configuration is out of
   scope for this specification.  RID systems SHOULD NOT use TCP port
   443 (the standard port for HTTP over TLS) for RID messages in order
   to avoid confusing standard HTTP/TLS servers for RID systems.

   RID systems MUST implement all REQUIRED functionality for HTTP/1.1
   [RFC2616].  All RID messages sent in HTTP Requests MUST be sent using
   the POST method with a Request-URI of '/'.  As RID documents are XML,
   the RID media type is 'text/xml'; i.e., the 'Content-type' Request
   and Response headers MUST be 'text/xml'.  As RID messages MUST be
   sent using the POST method, the GET and HEAD methods have no

Trammell                     Standards Track                    [Page 3]



RFC 6546                      RID Transport                   April 2012

   particular meaning on a RID system; a RID system SHOULD answer
   'GET /' or 'HEAD /' with 204 No Content.  Other Request-URIs are
   reserved for future use; any access to Request-URIs other than '/' by
   any method on a RID system SHOULD return the appropriate HTTP error
   (404 Not Found).

   Since the content of RID messages is essentially declarative, a RID
   system interrupted during transport MAY simply repeat the
   transaction; the sending of a RID message is idempotent.

   As the queries and replies in a RID message exchange may be
   significantly separated in time, RID over HTTP/TLS supports a
   callback mechanism.  In this mechanism, the receiving RID system MAY
   return a 202 Accepted response, called a RID callback, instead of a
   RID message.  The RID callback MUST contain a zero-length entity body
   and a 'RID-Callback-Token' entity header field, itself containing a
   unique token generated by the receiving RID system.

   The RID-Callback-Token is an opaque, whitespace-free string of up to
   255 printable ASCII characters that MUST uniquely identify the
   callback among all callbacks from the receiving RID system to the
   sending RID system.  Due to the amount of time that may be required
   to generate a RID Result or Report response, there is no upper bound
   on the time period for this uniqueness requirement.  The RID-
   Callback-Token in ABNF [RFC5234] form is shown below:

   callback-token = 1*255(VCHAR)

   When performing RID callback, a responding system MUST connect to the
   host at the network-layer address from which the original request was
   sent; there is no mechanism in RID for redirected callback.  This
   callback SHOULD use TCP port 4590 unless configured to use a
   different port.

   While a RID system SHOULD return the reply in an HTTP Response if it
   is available immediately or within a generally accepted HTTP client
   timeout (about thirty seconds), this is not mandatory, and as such
   RID systems MUST be prepared for a query to be met with a 202
   Accepted, an empty Response body, a connection termination, and a
   callback.  Note that all RID messages require a response from the
   receiving RID system, so a sending RID system can expect either an
   immediate response or a callback.

   Table 1 lists the allowable RID message types in an HTTP Response for
   a given RID message type in the Request.  A RID system MUST be
   prepared to handle an HTTP Response of the given type(s) when sending

Trammell                     Standards Track                    [Page 4]



RFC 6546                      RID Transport                   April 2012

   the corresponding HTTP Request.  A RID system MUST NOT send an HTTP
   Response containing any RID message other than the one corresponding
   to the one sent in the HTTP Request.

     +----------------------+----------+--------+-------------------+
     | Request RID type     | Callback | Result | Response RID type |
     +----------------------+----------+--------+-------------------+
     | InvestigationRequest |          | 200    | Acknowledgement   |
     | InvestigationRequest |          | 200    | Result            |
     | InvestigationRequest |          | 200    | Report            |
     | InvestigationRequest |          | 202    | [empty]           |
     | TraceRequest         |          | 200    | Acknowledgement   |
     | TraceRequest         |          | 200    | Result            |
     | TraceRequest         |          | 200    | Report            |
     | TraceRequest         |          | 202    | [empty]           |
     | Query                |          | 200    | Acknowledgement   |
     | Query                |          | 200    | Report            |
     | Query                |          | 202    | [empty]           |
     | Acknowledgement      |     X    | 200    | [empty]           |
     | Result               |     X    | 200    | [empty]           |
     | Report               |          | 200    | Acknowledgement   |
     | Report               |          | 200    | [empty]           |
     | Report               |     X    | 200    | [empty]           |
     +----------------------+----------+--------+-------------------+

                                  Table 1

   The use of stable DNS names to address RID systems is RECOMMENDED; in
   addition to facilitating connection to RID systems within a
   consortium, these are to be used as reference identifiers for a RID
   system's peers.  For security purposes, RID systems SHOULD NOT return
   3xx Redirection response codes, and SHOULD NOT follow any 3xx
   Redirection.  The protocol provides no in-band method for handling a
   change of address of a RID system.

   If a RID system receives an improper RID message in an HTTP Request,
   it MUST return an appropriate 4xx Client Error result code to the
   requesting RID system.  If a RID system cannot process a RID message
   received in an HTTP Request due to an error on its own side, it MUST
   return an appropriate 5xx Server Error result code to the requesting
   RID system.

   Note that HTTP provides no mechanism for signaling to a server that a
   response body is not a valid RID message.  If a RID system receives
   an improper RID message in an HTTP Response, or cannot process a RID
   message received in an HTTP Response due to an error on its own side,

Trammell                     Standards Track                    [Page 5]



RFC 6546                      RID Transport                   April 2012

   it MUST log the error and present it to the RID system administrator
   for handling; the error logging format is an implementation detail
   and is considered out of scope for this specification.

   RID systems MUST support and SHOULD use HTTP/1.1 persistent
   connections as described in [RFC2616].  RID systems MUST support
   chunked transfer encoding on the HTTP server side to allow the
   implementation of clients that do not need to pre-calculate message
   sizes before constructing HTTP headers.

   RID systems MUST use TLS version 1.1 [RFC4346] or higher for
   confidentiality, identification, and authentication, when sending RID
   messages over HTTPS.  HTTPS is specified in Section 2 of [RFC2818].
   RID systems MUST use mutual authentication; that is, both RID systems
   acting as HTTPS clients and RID systems acting as HTTPS servers MUST
   be identified by an X.509 certificate [RFC5280].  Mutual
   authentication requires full path validation on each certificate, as
   defined in [RFC5280].

   The TLS session MUST use non-NULL ciphersuites for authentication,
   integrity, and confidentiality.  Sessions MAY be renegotiated within
   these constraints.

   All RID systems SHOULD be identified by a certificate containing
   DNS-ID identifier as in Section 6.4 of [RFC6125]; the inclusion of
   Common Names (CN-IDs) in certificates identifying RID systems is NOT
   RECOMMENDED.  RID systems MUST verify the reference identifiers of
   their peers against those stored in the certificates presented using
   one of the methods in the following paragraph.  Wildcards MUST NOT
   appear in the DNS-ID or CN-ID of a certificate identifying a RID
   system.

   RID systems MUST support the verification of certificates against an
   explicit whitelist of peer certificates.  RID systems SHOULD support
   the verification of reference identifiers by matching the DNS-ID or
   CN-ID with a reverse DNS lookup of the connecting RID peer; this
   support SHOULD allow the lookup to be cached and/or done in advance
   in order to ensure verifiability during instability or compromise of
   DNS itself.

   Additional general information on the use of PKI with RID systems is
   detailed in Section 9.3 of [RFC6545].

   RID systems MUST support TLS version 1.1 and SHOULD support TLS
   version 1.2 [RFC5246]; RID systems MUST NOT request, offer, or use
   any version of SSL, or any version of TLS prior to 1.1, due to known
   security vulnerabilities in prior versions of the protocol; see
   Appendix E of [RFC5246] for more information.

Trammell                     Standards Track                    [Page 6]



RFC 6546                      RID Transport                   April 2012

4.  Security Considerations

   In addition to the final paragraphs in Section 3 on the use of TLS to
   secure RID message transport, all security considerations of related
   documents apply, especially the Incident Object Description Exchange
   Format (IODEF) [RFC5070] and Real-time Inter-network Defense (RID)
   [RFC6545].  The protocol described herein is built on the foundation
   of those documents; the security considerations contained therein are
   incorporated by reference.

5.  IANA Considerations

   Consistent with BCP 56 [RFC3205], since RID over HTTP/TLS is a
   substantially new service, and should be controlled at the consortium
   member network's border differently than HTTP/TLS, it requires a new
   port number.  IANA has assigned port 4590/tcp to RID with service
   name "RID over HTTP/TLS".

6.  Acknowledgements

   The author would like to thank David Black for the review, and
   Kathleen Moriarty for work on earlier revisions of this
   specification.  This work was partially supported by the European
   Union Seventh Framework Program under grant agreement 257315
   (DEMONS).

7.  References

7.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2616]  Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
              Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
              Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

   [RFC2818]  Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

   [RFC5070]  Danyliw, R., Meijer, J., and Y. Demchenko, "The Incident
              Object Description Exchange Format", RFC 5070,
              December 2007.

   [RFC5246]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Trammell                     Standards Track                    [Page 7]



RFC 6546                      RID Transport                   April 2012

   [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
              Housley, R., and W. Polk, "Internet X.509 Public Key
              Infrastructure Certificate and Certificate Revocation List
              (CRL) Profile", RFC 5280, May 2008.

   [RFC6125]  Saint-Andre, P. and J. Hodges, "Representation and
              Verification of Domain-Based Application Service Identity
              within Internet Public Key Infrastructure Using X.509
              (PKIX) Certificates in the Context of Transport Layer
              Security (TLS)", RFC 6125, March 2011.

   [RFC6545]  Moriarty, K., "Real-time Inter-network Defense (RID)",
              RFC 6545, April 2012.

7.2.  Informative References

   [RFC3205]  Moore, K., "On the use of HTTP as a Substrate", BCP 56,
              RFC 3205, February 2002.

   [RFC4346]  Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.1", RFC 4346, April 2006.

   [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234, January 2008.

   [RFC6046]  Moriarty, K. and B. Trammell, "Transport of Real-time
              Inter-network Defense (RID) Messages", RFC 6046,
              November 2010.

Author's Address

   Brian Trammell
   Swiss Federal Institute of Technology Zurich
   Gloriastrasse 35
   8092 Zurich
   Switzerland

   Phone: +41 44 632 70 13
   EMail: trammell@tik.ee.ethz.ch

Trammell                     Standards Track                    [Page 8]