(also RFC 821, RFC 974, RFC 1869, RFC 1870)
Obsoletes RFC 788, RFC 780, RFC 772[Note that this file is a concatenation of more than one RFC.] RFC 821 SIMPLE MAIL TRANSFER PROTOCOL Jonathan B. Postel August 1982 Information Sciences Institute University of Southern California 4676 Admiralty Way Marina del Rey, California 90291 (213) 822-1511
RFC 821 August 1982 Simple Mail Transfer Protocol TABLE OF CONTENTS 1. INTRODUCTION .................................................. 1 2. THE SMTP MODEL ................................................ 2 3. THE SMTP PROCEDURE ............................................ 4 3.1. Mail ..................................................... 4 3.2. Forwarding ............................................... 7 3.3. Verifying and Expanding .................................. 8 3.4. Sending and Mailing ..................................... 11 3.5. Opening and Closing ..................................... 13 3.6. Relaying ................................................ 14 3.7. Domains ................................................. 17 3.8. Changing Roles .......................................... 18 4. THE SMTP SPECIFICATIONS ...................................... 19 4.1. SMTP Commands ........................................... 19 4.1.1. Command Semantics ..................................... 19 4.1.2. Command Syntax ........................................ 27 4.2. SMTP Replies ............................................ 34 4.2.1. Reply Codes by Function Group ......................... 35 4.2.2. Reply Codes in Numeric Order .......................... 36 4.3. Sequencing of Commands and Replies ...................... 37 4.4. State Diagrams .......................................... 39 4.5. Details ................................................. 41 4.5.1. Minimum Implementation ................................ 41 4.5.2. Transparency .......................................... 41 4.5.3. Sizes ................................................. 42 APPENDIX A: TCP ................................................. 44 APPENDIX B: NCP ................................................. 45 APPENDIX C: NITS ................................................ 46 APPENDIX D: X.25 ................................................ 47 APPENDIX E: Theory of Reply Codes ............................... 48 APPENDIX F: Scenarios ........................................... 51 GLOSSARY ......................................................... 64 REFERENCES ....................................................... 67
Network Working Group J. Postel Request for Comments: DRAFT ISI Replaces: RFC 788, 780, 772 August 1982 SIMPLE MAIL TRANSFER PROTOCOL 1. INTRODUCTION The objective of Simple Mail Transfer Protocol (SMTP) is to transfer mail reliably and efficiently. SMTP is independent of the particular transmission subsystem and requires only a reliable ordered data stream channel. Appendices A, B, C, and D describe the use of SMTP with various transport services. A Glossary provides the definitions of terms as used in this document. An important feature of SMTP is its capability to relay mail across transport service environments. A transport service provides an interprocess communication environment (IPCE). An IPCE may cover one network, several networks, or a subset of a network. It is important to realize that transport systems (or IPCEs) are not one-to-one with networks. A process can communicate directly with another process through any mutually known IPCE. Mail is an application or use of interprocess communication. Mail can be communicated between processes in different IPCEs by relaying through a process connected to two (or more) IPCEs. More specifically, mail can be relayed between hosts on different transport systems by a host on both transport systems. Postel [Page 1]
August 1982 RFC 821 Simple Mail Transfer Protocol 2. THE SMTP MODEL The SMTP design is based on the following model of communication: as the result of a user mail request, the sender-SMTP establishes a two-way transmission channel to a receiver-SMTP. The receiver-SMTP may be either the ultimate destination or an intermediate. SMTP commands are generated by the sender-SMTP and sent to the receiver-SMTP. SMTP replies are sent from the receiver-SMTP to the sender-SMTP in response to the commands. Once the transmission channel is established, the SMTP-sender sends a MAIL command indicating the sender of the mail. If the SMTP-receiver can accept mail it responds with an OK reply. The SMTP-sender then sends a RCPT command identifying a recipient of the mail. If the SMTP-receiver can accept mail for that recipient it responds with an OK reply; if not, it responds with a reply rejecting that recipient (but not the whole mail transaction). The SMTP-sender and SMTP-receiver may negotiate several recipients. When the recipients have been negotiated the SMTP-sender sends the mail data, terminating with a special sequence. If the SMTP-receiver successfully processes the mail data it responds with an OK reply. The dialog is purposely lock-step, one-at-a-time. ------------------------------------------------------------- +----------+ +----------+ +------+ | | | | | User |<-->| | SMTP | | +------+ | Sender- |Commands/Replies| Receiver-| +------+ | SMTP |<-------------->| SMTP | +------+ | File |<-->| | and Mail | |<-->| File | |System| | | | | |System| +------+ +----------+ +----------+ +------+ Sender-SMTP Receiver-SMTP Model for SMTP Use Figure 1 ------------------------------------------------------------- The SMTP provides mechanisms for the transmission of mail; directly from the sending user's host to the receiving user's host when the [Page 2] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol two host are connected to the same transport service, or via one or more relay SMTP-servers when the source and destination hosts are not connected to the same transport service. To be able to provide the relay capability the SMTP-server must be supplied with the name of the ultimate destination host as well as the destination mailbox name. The argument to the MAIL command is a reverse-path, which specifies who the mail is from. The argument to the RCPT command is a forward-path, which specifies who the mail is to. The forward-path is a source route, while the reverse-path is a return route (which may be used to return a message to the sender when an error occurs with a relayed message). When the same message is sent to multiple recipients the SMTP encourages the transmission of only one copy of the data for all the recipients at the same destination host. The mail commands and replies have a rigid syntax. Replies also have a numeric code. In the following, examples appear which use actual commands and replies. The complete lists of commands and replies appears in Section 4 on specifications. Commands and replies are not case sensitive. That is, a command or reply word may be upper case, lower case, or any mixture of upper and lower case. Note that this is not true of mailbox user names. For some hosts the user name is case sensitive, and SMTP implementations must take case to preserve the case of user names as they appear in mailbox arguments. Host names are not case sensitive. Commands and replies are composed of characters from the ASCII character set [1]. When the transport service provides an 8-bit byte (octet) transmission channel, each 7-bit character is transmitted right justified in an octet with the high order bit cleared to zero. When specifying the general form of a command or reply, an argument (or special symbol) will be denoted by a meta-linguistic variable (or constant), for example, "<string>" or "<reverse-path>". Here the angle brackets indicate these are meta-linguistic variables. However, some arguments use the angle brackets literally. For example, an actual reverse-path is enclosed in angle brackets, i.e., "<John.Smith@USC-ISI.ARPA>" is an instance of <reverse-path> (the angle brackets are actually transmitted in the command or reply). Postel [Page 3]
August 1982 RFC 821 Simple Mail Transfer Protocol 3. THE SMTP PROCEDURES This section presents the procedures used in SMTP in several parts. First comes the basic mail procedure defined as a mail transaction. Following this are descriptions of forwarding mail, verifying mailbox names and expanding mailing lists, sending to terminals instead of or in combination with mailboxes, and the opening and closing exchanges. At the end of this section are comments on relaying, a note on mail domains, and a discussion of changing roles. Throughout this section are examples of partial command and reply sequences, several complete scenarios are presented in Appendix F. 3.1. MAIL There are three steps to SMTP mail transactions. The transaction is started with a MAIL command which gives the sender identification. A series of one or more RCPT commands follows giving the receiver information. Then a DATA command gives the mail data. And finally, the end of mail data indicator confirms the transaction. The first step in the procedure is the MAIL command. The <reverse-path> contains the source mailbox. MAIL <SP> FROM:<reverse-path> <CRLF> This command tells the SMTP-receiver that a new mail transaction is starting and to reset all its state tables and buffers, including any recipients or mail data. It gives the reverse-path which can be used to report errors. If accepted, the receiver-SMTP returns a 250 OK reply. The <reverse-path> can contain more than just a mailbox. The <reverse-path> is a reverse source routing list of hosts and source mailbox. The first host in the <reverse-path> should be the host sending this command. The second step in the procedure is the RCPT command. RCPT <SP> TO:<forward-path> <CRLF> This command gives a forward-path identifying one recipient. If accepted, the receiver-SMTP returns a 250 OK reply, and stores the forward-path. If the recipient is unknown the receiver-SMTP returns a 550 Failure reply. This second step of the procedure can be repeated any number of times. [Page 4] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol The <forward-path> can contain more than just a mailbox. The <forward-path> is a source routing list of hosts and the destination mailbox. The first host in the <forward-path> should be the host receiving this command. The third step in the procedure is the DATA command. DATA <CRLF> If accepted, the receiver-SMTP returns a 354 Intermediate reply and considers all succeeding lines to be the message text. When the end of text is received and stored the SMTP-receiver sends a 250 OK reply. Since the mail data is sent on the transmission channel the end of the mail data must be indicated so that the command and reply dialog can be resumed. SMTP indicates the end of the mail data by sending a line containing only a period. A transparency procedure is used to prevent this from interfering with the user's text (see Section 4.5.2). Please note that the mail data includes the memo header items such as Date, Subject, To, Cc, From [2]. The end of mail data indicator also confirms the mail transaction and tells the receiver-SMTP to now process the stored recipients and mail data. If accepted, the receiver-SMTP returns a 250 OK reply. The DATA command should fail only if the mail transaction was incomplete (for example, no recipients), or if resources are not available. The above procedure is an example of a mail transaction. These commands must be used only in the order discussed above. Example 1 (below) illustrates the use of these commands in a mail transaction. Postel [Page 5]
August 1982 RFC 821 Simple Mail Transfer Protocol ------------------------------------------------------------- Example of the SMTP Procedure This SMTP example shows mail sent by Smith at host Alpha.ARPA, to Jones, Green, and Brown at host Beta.ARPA. Here we assume that host Alpha contacts host Beta directly. S: MAIL FROM:<Smith@Alpha.ARPA> R: 250 OK S: RCPT TO:<Jones@Beta.ARPA> R: 250 OK S: RCPT TO:<Green@Beta.ARPA> R: 550 No such user here S: RCPT TO:<Brown@Beta.ARPA> R: 250 OK S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: <CRLF>.<CRLF> R: 250 OK The mail has now been accepted for Jones and Brown. Green did not have a mailbox at host Beta. Example 1 ------------------------------------------------------------- [Page 6] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol 3.2. FORWARDING There are some cases where the destination information in the <forward-path> is incorrect, but the receiver-SMTP knows the correct destination. In such cases, one of the following replies should be used to allow the sender to contact the correct destination. 251 User not local; will forward to <forward-path> This reply indicates that the receiver-SMTP knows the user's mailbox is on another host and indicates the correct forward-path to use in the future. Note that either the host or user or both may be different. The receiver takes responsibility for delivering the message. 551 User not local; please try <forward-path> This reply indicates that the receiver-SMTP knows the user's mailbox is on another host and indicates the correct forward-path to use. Note that either the host or user or both may be different. The receiver refuses to accept mail for this user, and the sender must either redirect the mail according to the information provided or return an error response to the originating user. Example 2 illustrates the use of these responses. ------------------------------------------------------------- Example of Forwarding Either S: RCPT TO:<Postel@USC-ISI.ARPA> R: 251 User not local; will forward to <Postel@USC-ISIF.ARPA> Or S: RCPT TO:<Paul@USC-ISIB.ARPA> R: 551 User not local; please try <Mockapetris@USC-ISIF.ARPA> Example 2 ------------------------------------------------------------- Postel [Page 7]
August 1982 RFC 821 Simple Mail Transfer Protocol 3.3. VERIFYING AND EXPANDING SMTP provides as additional features, commands to verify a user name or expand a mailing list. This is done with the VRFY and EXPN commands, which have character string arguments. For the VRFY command, the string is a user name, and the response may include the full name of the user and must include the mailbox of the user. For the EXPN command, the string identifies a mailing list, and the multiline response may include the full name of the users and must give the mailboxes on the mailing list. "User name" is a fuzzy term and used purposely. If a host implements the VRFY or EXPN commands then at least local mailboxes must be recognized as "user names". If a host chooses to recognize other strings as "user names" that is allowed. In some hosts the distinction between a mailing list and an alias for a single mailbox is a bit fuzzy, since a common data structure may hold both types of entries, and it is possible to have mailing lists of one mailbox. If a request is made to verify a mailing list a positive response can be given if on receipt of a message so addressed it will be delivered to everyone on the list, otherwise an error should be reported (e.g., "550 That is a mailing list, not a user"). If a request is made to expand a user name a positive response can be formed by returning a list containing one name, or an error can be reported (e.g., "550 That is a user name, not a mailing list"). In the case of a multiline reply (normal for EXPN) exactly one mailbox is to be specified on each line of the reply. In the case of an ambiguous request, for example, "VRFY Smith", where there are two Smith's the response must be "553 User ambiguous". The case of verifying a user name is straightforward as shown in example 3. [Page 8] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol ------------------------------------------------------------- Example of Verifying a User Name Either S: VRFY Smith R: 250 Fred Smith <Smith@USC-ISIF.ARPA> Or S: VRFY Smith R: 251 User not local; will forward to <Smith@USC-ISIQ.ARPA> Or S: VRFY Jones R: 550 String does not match anything. Or S: VRFY Jones R: 551 User not local; please try <Jones@USC-ISIQ.ARPA> Or S: VRFY Gourzenkyinplatz R: 553 User ambiguous. Example 3 ------------------------------------------------------------- Postel [Page 9]
August 1982 RFC 821 Simple Mail Transfer Protocol The case of expanding a mailbox list requires a multiline reply as shown in example 4. ------------------------------------------------------------- Example of Expanding a Mailing List Either S: EXPN Example-People R: 250-Jon Postel <Postel@USC-ISIF.ARPA> R: 250-Fred Fonebone <Fonebone@USC-ISIQ.ARPA> R: 250-Sam Q. Smith <SQSmith@USC-ISIQ.ARPA> R: 250-Quincy Smith <@USC-ISIF.ARPA:Q-Smith@ISI-VAXA.ARPA> R: 250-<joe@foo-unix.ARPA> R: 250 <xyz@bar-unix.ARPA> Or S: EXPN Executive-Washroom-List R: 550 Access Denied to You. Example 4 ------------------------------------------------------------- The character string arguments of the VRFY and EXPN commands cannot be further restricted due to the variety of implementations of the user name and mailbox list concepts. On some systems it may be appropriate for the argument of the EXPN command to be a file name for a file containing a mailing list, but again there is a variety of file naming conventions in the Internet. The VRFY and EXPN commands are not included in the minimum implementation (Section 4.5.1), and are not required to work across relays when they are implemented. [Page 10] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol 3.4. SENDING AND MAILING The main purpose of SMTP is to deliver messages to user's mailboxes. A very similar service provided by some hosts is to deliver messages to user's terminals (provided the user is active on the host). The delivery to the user's mailbox is called "mailing", the delivery to the user's terminal is called "sending". Because in many hosts the implementation of sending is nearly identical to the implementation of mailing these two functions are combined in SMTP. However the sending commands are not included in the required minimum implementation (Section 4.5.1). Users should have the ability to control the writing of messages on their terminals. Most hosts permit the users to accept or refuse such messages. The following three command are defined to support the sending options. These are used in the mail transaction instead of the MAIL command and inform the receiver-SMTP of the special semantics of this transaction: SEND <SP> FROM:<reverse-path> <CRLF> The SEND command requires that the mail data be delivered to the user's terminal. If the user is not active (or not accepting terminal messages) on the host a 450 reply may returned to a RCPT command. The mail transaction is successful if the message is delivered the terminal. SOML <SP> FROM:<reverse-path> <CRLF> The Send Or MaiL command requires that the mail data be delivered to the user's terminal if the user is active (and accepting terminal messages) on the host. If the user is not active (or not accepting terminal messages) then the mail data is entered into the user's mailbox. The mail transaction is successful if the message is delivered either to the terminal or the mailbox. SAML <SP> FROM:<reverse-path> <CRLF> The Send And MaiL command requires that the mail data be delivered to the user's terminal if the user is active (and accepting terminal messages) on the host. In any case the mail data is entered into the user's mailbox. The mail transaction is successful if the message is delivered the mailbox. Postel [Page 11]
August 1982 RFC 821 Simple Mail Transfer Protocol The same reply codes that are used for the MAIL commands are used for these commands. [Page 12] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol 3.5. OPENING AND CLOSING At the time the transmission channel is opened there is an exchange to ensure that the hosts are communicating with the hosts they think they are. The following two commands are used in transmission channel opening and closing: HELO <SP> <domain> <CRLF> QUIT <CRLF> In the HELO command the host sending the command identifies itself; the command may be interpreted as saying "Hello, I am <domain>". ------------------------------------------------------------- Example of Connection Opening R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready S: HELO USC-ISIF.ARPA R: 250 BBN-UNIX.ARPA Example 5 ------------------------------------------------------------- ------------------------------------------------------------- Example of Connection Closing S: QUIT R: 221 BBN-UNIX.ARPA Service closing transmission channel Example 6 ------------------------------------------------------------- Postel [Page 13]
August 1982 RFC 821 Simple Mail Transfer Protocol 3.6. RELAYING The forward-path may be a source route of the form "@ONE,@TWO:JOE@THREE", where ONE, TWO, and THREE are hosts. This form is used to emphasize the distinction between an address and a route. The mailbox is an absolute address, and the route is information about how to get there. The two concepts should not be confused. Conceptually the elements of the forward-path are moved to the reverse-path as the message is relayed from one server-SMTP to another. The reverse-path is a reverse source route, (i.e., a source route from the current location of the message to the originator of the message). When a server-SMTP deletes its identifier from the forward-path and inserts it into the reverse-path, it must use the name it is known by in the environment it is sending into, not the environment the mail came from, in case the server-SMTP is known by different names in different environments. If when the message arrives at an SMTP the first element of the forward-path is not the identifier of that SMTP the element is not deleted from the forward-path and is used to determine the next SMTP to send the message to. In any case, the SMTP adds its own identifier to the reverse-path. Using source routing the receiver-SMTP receives mail to be relayed to another server-SMTP The receiver-SMTP may accept or reject the task of relaying the mail in the same way it accepts or rejects mail for a local user. The receiver-SMTP transforms the command arguments by moving its own identifier from the forward-path to the beginning of the reverse-path. The receiver-SMTP then becomes a sender-SMTP, establishes a transmission channel to the next SMTP in the forward-path, and sends it the mail. The first host in the reverse-path should be the host sending the SMTP commands, and the first host in the forward-path should be the host receiving the SMTP commands. Notice that the forward-path and reverse-path appear in the SMTP commands and replies, but not necessarily in the message. That is, there is no need for these paths and especially this syntax to appear in the "To:" , "From:", "CC:", etc. fields of the message header. If a server-SMTP has accepted the task of relaying the mail and [Page 14] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol later finds that the forward-path is incorrect or that the mail cannot be delivered for whatever reason, then it must construct an "undeliverable mail" notification message and send it to the originator of the undeliverable mail (as indicated by the reverse-path). This notification message must be from the server-SMTP at this host. Of course, server-SMTPs should not send notification messages about problems with notification messages. One way to prevent loops in error reporting is to specify a null reverse-path in the MAIL command of a notification message. When such a message is relayed it is permissible to leave the reverse-path null. A MAIL command with a null reverse-path appears as follows: MAIL FROM:<> An undeliverable mail notification message is shown in example 7. This notification is in response to a message originated by JOE at HOSTW and sent via HOSTX to HOSTY with instructions to relay it on to HOSTZ. What we see in the example is the transaction between HOSTY and HOSTX, which is the first step in the return of the notification message. Postel [Page 15]
August 1982 RFC 821 Simple Mail Transfer Protocol ------------------------------------------------------------- Example Undeliverable Mail Notification Message S: MAIL FROM:<> R: 250 ok S: RCPT TO:<@HOSTX.ARPA:JOE@HOSTW.ARPA> R: 250 ok S: DATA R: 354 send the mail data, end with . S: Date: 23 Oct 81 11:22:33 S: From: SMTP@HOSTY.ARPA S: To: JOE@HOSTW.ARPA S: Subject: Mail System Problem S: S: Sorry JOE, your message to SAM@HOSTZ.ARPA lost. S: HOSTZ.ARPA said this: S: "550 No Such User" S: . R: 250 ok Example 7 ------------------------------------------------------------- [Page 16] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol 3.7. DOMAINS Domains are a recently introduced concept in the ARPA Internet mail system. The use of domains changes the address space from a flat global space of simple character string host names to a hierarchically structured rooted tree of global addresses. The host name is replaced by a domain and host designator which is a sequence of domain element strings separated by periods with the understanding that the domain elements are ordered from the most specific to the most general. For example, "USC-ISIF.ARPA", "Fred.Cambridge.UK", and "PC7.LCS.MIT.ARPA" might be host-and-domain identifiers. Whenever domain names are used in SMTP only the official names are used, the use of nicknames or aliases is not allowed. Postel [Page 17]
August 1982 RFC 821 Simple Mail Transfer Protocol 3.8. CHANGING ROLES The TURN command may be used to reverse the roles of the two programs communicating over the transmission channel. If program-A is currently the sender-SMTP and it sends the TURN command and receives an ok reply (250) then program-A becomes the receiver-SMTP. If program-B is currently the receiver-SMTP and it receives the TURN command and sends an ok reply (250) then program-B becomes the sender-SMTP. To refuse to change roles the receiver sends the 502 reply. Please note that this command is optional. It would not normally be used in situations where the transmission channel is TCP. However, when the cost of establishing the transmission channel is high, this command may be quite useful. For example, this command may be useful in supporting be mail exchange using the public switched telephone system as a transmission channel, especially if some hosts poll other hosts for mail exchanges. [Page 18] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol 4. THE SMTP SPECIFICATIONS 4.1. SMTP COMMANDS 4.1.1. COMMAND SEMANTICS The SMTP commands define the mail transfer or the mail system function requested by the user. SMTP commands are character strings terminated by <CRLF>. The command codes themselves are alphabetic characters terminated by <SP> if parameters follow and <CRLF> otherwise. The syntax of mailboxes must conform to receiver site conventions. The SMTP commands are discussed below. The SMTP replies are discussed in the Section 4.2. A mail transaction involves several data objects which are communicated as arguments to different commands. The reverse-path is the argument of the MAIL command, the forward-path is the argument of the RCPT command, and the mail data is the argument of the DATA command. These arguments or data objects must be transmitted and held pending the confirmation communicated by the end of mail data indication which finalizes the transaction. The model for this is that distinct buffers are provided to hold the types of data objects, that is, there is a reverse-path buffer, a forward-path buffer, and a mail data buffer. Specific commands cause information to be appended to a specific buffer, or cause one or more buffers to be cleared. HELLO (HELO) This command is used to identify the sender-SMTP to the receiver-SMTP. The argument field contains the host name of the sender-SMTP. The receiver-SMTP identifies itself to the sender-SMTP in the connection greeting reply, and in the response to this command. This command and an OK reply to it confirm that both the sender-SMTP and the receiver-SMTP are in the initial state, that is, there is no transaction in progress and all state tables and buffers are cleared. Postel [Page 19]
August 1982 RFC 821 Simple Mail Transfer Protocol MAIL (MAIL) This command is used to initiate a mail transaction in which the mail data is delivered to one or more mailboxes. The argument field contains a reverse-path. The reverse-path consists of an optional list of hosts and the sender mailbox. When the list of hosts is present, it is a "reverse" source route and indicates that the mail was relayed through each host on the list (the first host in the list was the most recent relay). This list is used as a source route to return non-delivery notices to the sender. As each relay host adds itself to the beginning of the list, it must use its name as known in the IPCE to which it is relaying the mail rather than the IPCE from which the mail came (if they are different). In some types of error reporting messages (for example, undeliverable mail notifications) the reverse-path may be null (see Example 7). This command clears the reverse-path buffer, the forward-path buffer, and the mail data buffer; and inserts the reverse-path information from this command into the reverse-path buffer. RECIPIENT (RCPT) This command is used to identify an individual recipient of the mail data; multiple recipients are specified by multiple use of this command. The forward-path consists of an optional list of hosts and a required destination mailbox. When the list of hosts is present, it is a source route and indicates that the mail must be relayed to the next host on the list. If the receiver-SMTP does not implement the relay function it may user the same reply it would for an unknown local user (550). When mail is relayed, the relay host must remove itself from the beginning forward-path and put itself at the beginning of the reverse-path. When mail reaches its ultimate destination (the forward-path contains only a destination mailbox), the receiver-SMTP inserts it into the destination mailbox in accordance with its host mail conventions. [Page 20] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol For example, mail received at relay host A with arguments FROM:<USERX@HOSTY.ARPA> TO:<@HOSTA.ARPA,@HOSTB.ARPA:USERC@HOSTD.ARPA> will be relayed on to host B with arguments FROM:<@HOSTA.ARPA:USERX@HOSTY.ARPA> TO:<@HOSTB.ARPA:USERC@HOSTD.ARPA>. This command causes its forward-path argument to be appended to the forward-path buffer. DATA (DATA) The receiver treats the lines following the command as mail data from the sender. This command causes the mail data from this command to be appended to the mail data buffer. The mail data may contain any of the 128 ASCII character codes. The mail data is terminated by a line containing only a period, that is the character sequence "<CRLF>.<CRLF>" (see Section 4.5.2 on Transparency). This is the end of mail data indication. The end of mail data indication requires that the receiver must now process the stored mail transaction information. This processing consumes the information in the reverse-path buffer, the forward-path buffer, and the mail data buffer, and on the completion of this command these buffers are cleared. If the processing is successful the receiver must send an OK reply. If the processing fails completely the receiver must send a failure reply. When the receiver-SMTP accepts a message either for relaying or for final delivery it inserts at the beginning of the mail data a time stamp line. The time stamp line indicates the identity of the host that sent the message, and the identity of the host that received the message (and is inserting this time stamp), and the date and time the message was received. Relayed messages will have multiple time stamp lines. When the receiver-SMTP makes the "final delivery" of a message it inserts at the beginning of the mail data a Postel [Page 21]
August 1982 RFC 821 Simple Mail Transfer Protocol return path line. The return path line preserves the information in the <reverse-path> from the MAIL command. Here, final delivery means the message leaves the SMTP world. Normally, this would mean it has been delivered to the destination user, but in some cases it may be further processed and transmitted by another mail system. It is possible for the mailbox in the return path be different from the actual sender's mailbox, for example, if error responses are to be delivered a special error handling mailbox rather than the message senders. The preceding two paragraphs imply that the final mail data will begin with a return path line, followed by one or more time stamp lines. These lines will be followed by the mail data header and body [2]. See Example 8. Special mention is needed of the response and further action required when the processing following the end of mail data indication is partially successful. This could arise if after accepting several recipients and the mail data, the receiver-SMTP finds that the mail data can be successfully delivered to some of the recipients, but it cannot be to others (for example, due to mailbox space allocation problems). In such a situation, the response to the DATA command must be an OK reply. But, the receiver-SMTP must compose and send an "undeliverable mail" notification message to the originator of the message. Either a single notification which lists all of the recipients that failed to get the message, or separate notification messages must be sent for each failed recipient (see Example 7). All undeliverable mail notification messages are sent using the MAIL command (even if they result from processing a SEND, SOML, or SAML command). [Page 22] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol ------------------------------------------------------------- Example of Return Path and Received Time Stamps Return-Path: <@GHI.ARPA,@DEF.ARPA,@ABC.ARPA:JOE@ABC.ARPA> Received: from GHI.ARPA by JKL.ARPA ; 27 Oct 81 15:27:39 PST Received: from DEF.ARPA by GHI.ARPA ; 27 Oct 81 15:15:13 PST Received: from ABC.ARPA by DEF.ARPA ; 27 Oct 81 15:01:59 PST Date: 27 Oct 81 15:01:01 PST From: JOE@ABC.ARPA Subject: Improved Mailing System Installed To: SAM@JKL.ARPA This is to inform you that ... Example 8 ------------------------------------------------------------- SEND (SEND) This command is used to initiate a mail transaction in which the mail data is delivered to one or more terminals. The argument field contains a reverse-path. This command is successful if the message is delivered to a terminal. The reverse-path consists of an optional list of hosts and the sender mailbox. When the list of hosts is present, it is a "reverse" source route and indicates that the mail was relayed through each host on the list (the first host in the list was the most recent relay). This list is used as a source route to return non-delivery notices to the sender. As each relay host adds itself to the beginning of the list, it must use its name as known in the IPCE to which it is relaying the mail rather than the IPCE from which the mail came (if they are different). This command clears the reverse-path buffer, the forward-path buffer, and the mail data buffer; and inserts the reverse-path information from this command into the reverse-path buffer. SEND OR MAIL (SOML) This command is used to initiate a mail transaction in which the mail data is delivered to one or more terminals or Postel [Page 23]
August 1982 RFC 821 Simple Mail Transfer Protocol mailboxes. For each recipient the mail data is delivered to the recipient's terminal if the recipient is active on the host (and accepting terminal messages), otherwise to the recipient's mailbox. The argument field contains a reverse-path. This command is successful if the message is delivered to a terminal or the mailbox. The reverse-path consists of an optional list of hosts and the sender mailbox. When the list of hosts is present, it is a "reverse" source route and indicates that the mail was relayed through each host on the list (the first host in the list was the most recent relay). This list is used as a source route to return non-delivery notices to the sender. As each relay host adds itself to the beginning of the list, it must use its name as known in the IPCE to which it is relaying the mail rather than the IPCE from which the mail came (if they are different). This command clears the reverse-path buffer, the forward-path buffer, and the mail data buffer; and inserts the reverse-path information from this command into the reverse-path buffer. SEND AND MAIL (SAML) This command is used to initiate a mail transaction in which the mail data is delivered to one or more terminals and mailboxes. For each recipient the mail data is delivered to the recipient's terminal if the recipient is active on the host (and accepting terminal messages), and for all recipients to the recipient's mailbox. The argument field contains a reverse-path. This command is successful if the message is delivered to the mailbox. The reverse-path consists of an optional list of hosts and the sender mailbox. When the list of hosts is present, it is a "reverse" source route and indicates that the mail was relayed through each host on the list (the first host in the list was the most recent relay). This list is used as a source route to return non-delivery notices to the sender. As each relay host adds itself to the beginning of the list, it must use its name as known in the IPCE to which it is relaying the mail rather than the IPCE from which the mail came (if they are different). This command clears the reverse-path buffer, the [Page 24] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol forward-path buffer, and the mail data buffer; and inserts the reverse-path information from this command into the reverse-path buffer. RESET (RSET) This command specifies that the current mail transaction is to be aborted. Any stored sender, recipients, and mail data must be discarded, and all buffers and state tables cleared. The receiver must send an OK reply. VERIFY (VRFY) This command asks the receiver to confirm that the argument identifies a user. If it is a user name, the full name of the user (if known) and the fully specified mailbox are returned. This command has no effect on any of the reverse-path buffer, the forward-path buffer, or the mail data buffer. EXPAND (EXPN) This command asks the receiver to confirm that the argument identifies a mailing list, and if so, to return the membership of that list. The full name of the users (if known) and the fully specified mailboxes are returned in a multiline reply. This command has no effect on any of the reverse-path buffer, the forward-path buffer, or the mail data buffer. HELP (HELP) This command causes the receiver to send helpful information to the sender of the HELP command. The command may take an argument (e.g., any command name) and return more specific information as a response. This command has no effect on any of the reverse-path buffer, the forward-path buffer, or the mail data buffer. Postel [Page 25]
August 1982 RFC 821 Simple Mail Transfer Protocol NOOP (NOOP) This command does not affect any parameters or previously entered commands. It specifies no action other than that the receiver send an OK reply. This command has no effect on any of the reverse-path buffer, the forward-path buffer, or the mail data buffer. QUIT (QUIT) This command specifies that the receiver must send an OK reply, and then close the transmission channel. The receiver should not close the transmission channel until it receives and replies to a QUIT command (even if there was an error). The sender should not close the transmission channel until it send a QUIT command and receives the reply (even if there was an error response to a previous command). If the connection is closed prematurely the receiver should act as if a RSET command had been received (canceling any pending transaction, but not undoing any previously completed transaction), the sender should act as if the command or transaction in progress had received a temporary error (4xx). TURN (TURN) This command specifies that the receiver must either (1) send an OK reply and then take on the role of the sender-SMTP, or (2) send a refusal reply and retain the role of the receiver-SMTP. If program-A is currently the sender-SMTP and it sends the TURN command and receives an OK reply (250) then program-A becomes the receiver-SMTP. Program-A is then in the initial state as if the transmission channel just opened, and it then sends the 220 service ready greeting. If program-B is currently the receiver-SMTP and it receives the TURN command and sends an OK reply (250) then program-B becomes the sender-SMTP. Program-B is then in the initial state as if the transmission channel just opened, and it then expects to receive the 220 service ready greeting. To refuse to change roles the receiver sends the 502 reply. [Page 26] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol There are restrictions on the order in which these command may be used. The first command in a session must be the HELO command. The HELO command may be used later in a session as well. If the HELO command argument is not acceptable a 501 failure reply must be returned and the receiver-SMTP must stay in the same state. The NOOP, HELP, EXPN, and VRFY commands can be used at any time during a session. The MAIL, SEND, SOML, or SAML commands begin a mail transaction. Once started a mail transaction consists of one of the transaction beginning commands, one or more RCPT commands, and a DATA command, in that order. A mail transaction may be aborted by the RSET command. There may be zero or more transactions in a session. If the transaction beginning command argument is not acceptable a 501 failure reply must be returned and the receiver-SMTP must stay in the same state. If the commands in a transaction are out of order a 503 failure reply must be returned and the receiver-SMTP must stay in the same state. The last command in a session must be the QUIT command. The QUIT command can not be used at any other time in a session. 4.1.2. COMMAND SYNTAX The commands consist of a command code followed by an argument field. Command codes are four alphabetic characters. Upper and lower case alphabetic characters are to be treated identically. Thus, any of the following may represent the mail command: MAIL Mail mail MaIl mAIl This also applies to any symbols representing parameter values, such as "TO" or "to" for the forward-path. Command codes and the argument fields are separated by one or more spaces. However, within the reverse-path and forward-path arguments case is important. In particular, in some hosts the user "smith" is different from the user "Smith". Postel [Page 27]
August 1982 RFC 821 Simple Mail Transfer Protocol The argument field consists of a variable length character string ending with the character sequence <CRLF>. The receiver is to take no action until this sequence is received. Square brackets denote an optional argument field. If the option is not taken, the appropriate default is implied. [Page 28] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol The following are the SMTP commands: HELO <SP> <domain> <CRLF> MAIL <SP> FROM:<reverse-path> <CRLF> RCPT <SP> TO:<forward-path> <CRLF> DATA <CRLF> RSET <CRLF> SEND <SP> FROM:<reverse-path> <CRLF> SOML <SP> FROM:<reverse-path> <CRLF> SAML <SP> FROM:<reverse-path> <CRLF> VRFY <SP> <string> <CRLF> EXPN <SP> <string> <CRLF> HELP [<SP> <string>] <CRLF> NOOP <CRLF> QUIT <CRLF> TURN <CRLF> Postel [Page 29]
August 1982 RFC 821 Simple Mail Transfer Protocol The syntax of the above argument fields (using BNF notation where applicable) is given below. The "..." notation indicates that a field may be repeated one or more times. <reverse-path> ::= <path> <forward-path> ::= <path> <path> ::= "<" [ <a-d-l> ":" ] <mailbox> ">" <a-d-l> ::= <at-domain> | <at-domain> "," <a-d-l> <at-domain> ::= "@" <domain> <domain> ::= <element> | <element> "." <domain> <element> ::= <name> | "#" <number> | "[" <dotnum> "]" <mailbox> ::= <local-part> "@" <domain> <local-part> ::= <dot-string> | <quoted-string> <name> ::= <a> <ldh-str> <let-dig> <ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str> <let-dig> ::= <a> | <d> <let-dig-hyp> ::= <a> | <d> | "-" <dot-string> ::= <string> | <string> "." <dot-string> <string> ::= <char> | <char> <string> <quoted-string> ::= """ <qtext> """ <qtext> ::= "\" <x> | "\" <x> <qtext> | <q> | <q> <qtext> <char> ::= <c> | "\" <x> <dotnum> ::= <snum> "." <snum> "." <snum> "." <snum> <number> ::= <d> | <d> <number> <CRLF> ::= <CR> <LF> [Page 30] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol <CR> ::= the carriage return character (ASCII code 13) <LF> ::= the line feed character (ASCII code 10) <SP> ::= the space character (ASCII code 32) <snum> ::= one, two, or three digits representing a decimal integer value in the range 0 through 255 <a> ::= any one of the 52 alphabetic characters A through Z in upper case and a through z in lower case <c> ::= any one of the 128 ASCII characters, but not any <special> or <SP> <d> ::= any one of the ten digits 0 through 9 <q> ::= any one of the 128 ASCII characters except <CR>, <LF>, quote ("), or backslash (\) <x> ::= any one of the 128 ASCII characters (no exceptions) <special> ::= "<" | ">" | "(" | ")" | "[" | "]" | "\" | "." | "," | ";" | ":" | "@" """ | the control characters (ASCII codes 0 through 31 inclusive and 127) Note that the backslash, "\", is a quote character, which is used to indicate that the next character is to be used literally (instead of its normal interpretation). For example, "Joe\,Smith" could be used to indicate a single nine character user field with comma being the fourth character of the field. Hosts are generally known by names which are translated to addresses in each host. Note that the name elements of domains are the official names -- no use of nicknames or aliases is allowed. Sometimes a host is not known to the translation function and communication is blocked. To bypass this barrier two numeric forms are also allowed for host "names". One form is a decimal integer prefixed by a pound sign, "#", which indicates the number is the address of the host. Another form is four small decimal integers separated by dots and enclosed by brackets, e.g., "[123.255.37.2]", which indicates a 32-bit ARPA Internet Address in four 8-bit fields. Postel [Page 31]
August 1982 RFC 821 Simple Mail Transfer Protocol The time stamp line and the return path line are formally defined as follows: <return-path-line> ::= "Return-Path:" <SP><reverse-path><CRLF> <time-stamp-line> ::= "Received:" <SP> <stamp> <CRLF> <stamp> ::= <from-domain> <by-domain> <opt-info> ";" <daytime> <from-domain> ::= "FROM" <SP> <domain> <SP> <by-domain> ::= "BY" <SP> <domain> <SP> <opt-info> ::= [<via>] [<with>] [<id>] [<for>] <via> ::= "VIA" <SP> <link> <SP> <with> ::= "WITH" <SP> <protocol> <SP> <id> ::= "ID" <SP> <string> <SP> <for> ::= "FOR" <SP> <path> <SP> <link> ::= The standard names for links are registered with the Network Information Center. <protocol> ::= The standard names for protocols are registered with the Network Information Center. <daytime> ::= <SP> <date> <SP> <time> <date> ::= <dd> <SP> <mon> <SP> <yy> <time> ::= <hh> ":" <mm> ":" <ss> <SP> <zone> <dd> ::= the one or two decimal integer day of the month in the range 1 to 31. <mon> ::= "JAN" | "FEB" | "MAR" | "APR" | "MAY" | "JUN" | "JUL" | "AUG" | "SEP" | "OCT" | "NOV" | "DEC" <yy> ::= the two decimal integer year of the century in the range 00 to 99. [Page 32] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol <hh> ::= the two decimal integer hour of the day in the range 00 to 24. <mm> ::= the two decimal integer minute of the hour in the range 00 to 59. <ss> ::= the two decimal integer second of the minute in the range 00 to 59. <zone> ::= "UT" for Universal Time (the default) or other time zone designator (as in [2]). ------------------------------------------------------------- Return Path Example Return-Path: <@CHARLIE.ARPA,@BAKER.ARPA:JOE@ABLE.ARPA> Example 9 ------------------------------------------------------------- ------------------------------------------------------------- Time Stamp Line Example Received: FROM ABC.ARPA BY XYZ.ARPA ; 22 OCT 81 09:23:59 PDT Received: from ABC.ARPA by XYZ.ARPA via TELENET with X25 id M12345 for Smith@PDQ.ARPA ; 22 OCT 81 09:23:59 PDT Example 10 ------------------------------------------------------------- Postel [Page 33]
August 1982 RFC 821 Simple Mail Transfer Protocol 4.2. SMTP REPLIES Replies to SMTP commands are devised to ensure the synchronization of requests and actions in the process of mail transfer, and to guarantee that the sender-SMTP always knows the state of the receiver-SMTP. Every command must generate exactly one reply. The details of the command-reply sequence are made explicit in Section 5.3 on Sequencing and Section 5.4 State Diagrams. An SMTP reply consists of a three digit number (transmitted as three alphanumeric characters) followed by some text. The number is intended for use by automata to determine what state to enter next; the text is meant for the human user. It is intended that the three digits contain enough encoded information that the sender-SMTP need not examine the text and may either discard it or pass it on to the user, as appropriate. In particular, the text may be receiver-dependent and context dependent, so there are likely to be varying texts for each reply code. A discussion of the theory of reply codes is given in Appendix E. Formally, a reply is defined to be the sequence: a three-digit code, <SP>, one line of text, and <CRLF>, or a multiline reply (as defined in Appendix E). Only the EXPN and HELP commands are expected to result in multiline replies in normal circumstances, however multiline replies are allowed for any command. [Page 34] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol 4.2.1. REPLY CODES BY FUNCTION GROUPS 500 Syntax error, command unrecognized [This may include errors such as command line too long] 501 Syntax error in parameters or arguments 502 Command not implemented 503 Bad sequence of commands 504 Command parameter not implemented 211 System status, or system help reply 214 Help message [Information on how to use the receiver or the meaning of a particular non-standard command; this reply is useful only to the human user] 220 <domain> Service ready 221 <domain> Service closing transmission channel 421 <domain> Service not available, closing transmission channel [This may be a reply to any command if the service knows it must shut down] 250 Requested mail action okay, completed 251 User not local; will forward to <forward-path> 450 Requested mail action not taken: mailbox unavailable [E.g., mailbox busy] 550 Requested action not taken: mailbox unavailable [E.g., mailbox not found, no access] 451 Requested action aborted: error in processing 551 User not local; please try <forward-path> 452 Requested action not taken: insufficient system storage 552 Requested mail action aborted: exceeded storage allocation 553 Requested action not taken: mailbox name not allowed [E.g., mailbox syntax incorrect] 354 Start mail input; end with <CRLF>.<CRLF> 554 Transaction failed Postel [Page 35]
August 1982 RFC 821 Simple Mail Transfer Protocol 4.2.2. NUMERIC ORDER LIST OF REPLY CODES 211 System status, or system help reply 214 Help message [Information on how to use the receiver or the meaning of a particular non-standard command; this reply is useful only to the human user] 220 <domain> Service ready 221 <domain> Service closing transmission channel 250 Requested mail action okay, completed 251 User not local; will forward to <forward-path> 354 Start mail input; end with <CRLF>.<CRLF> 421 <domain> Service not available, closing transmission channel [This may be a reply to any command if the service knows it must shut down] 450 Requested mail action not taken: mailbox unavailable [E.g., mailbox busy] 451 Requested action aborted: local error in processing 452 Requested action not taken: insufficient system storage 500 Syntax error, command unrecognized [This may include errors such as command line too long] 501 Syntax error in parameters or arguments 502 Command not implemented 503 Bad sequence of commands 504 Command parameter not implemented 550 Requested action not taken: mailbox unavailable [E.g., mailbox not found, no access] 551 User not local; please try <forward-path> 552 Requested mail action aborted: exceeded storage allocation 553 Requested action not taken: mailbox name not allowed [E.g., mailbox syntax incorrect] 554 Transaction failed [Page 36] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol 4.3. SEQUENCING OF COMMANDS AND REPLIES The communication between the sender and receiver is intended to be an alternating dialogue, controlled by the sender. As such, the sender issues a command and the receiver responds with a reply. The sender must wait for this response before sending further commands. One important reply is the connection greeting. Normally, a receiver will send a 220 "Service ready" reply when the connection is completed. The sender should wait for this greeting message before sending any commands. Note: all the greeting type replies have the official name of the server host as the first word following the reply code. For example, 220 <SP> USC-ISIF.ARPA <SP> Service ready <CRLF> The table below lists alternative success and failure replies for each command. These must be strictly adhered to; a receiver may substitute text in the replies, but the meaning and action implied by the code numbers and by the specific command reply sequence cannot be altered. COMMAND-REPLY SEQUENCES Each command is listed with its possible replies. The prefixes used before the possible replies are "P" for preliminary (not used in SMTP), "I" for intermediate, "S" for success, "F" for failure, and "E" for error. The 421 reply (service not available, closing transmission channel) may be given to any command if the SMTP-receiver knows it must shut down. This listing forms the basis for the State Diagrams in Section 4.4. CONNECTION ESTABLISHMENT S: 220 F: 421 HELO S: 250 E: 500, 501, 504, 421 MAIL S: 250 F: 552, 451, 452 E: 500, 501, 421 Postel [Page 37]
August 1982 RFC 821 Simple Mail Transfer Protocol RCPT S: 250, 251 F: 550, 551, 552, 553, 450, 451, 452 E: 500, 501, 503, 421 DATA I: 354 -> data -> S: 250 F: 552, 554, 451, 452 F: 451, 554 E: 500, 501, 503, 421 RSET S: 250 E: 500, 501, 504, 421 SEND S: 250 F: 552, 451, 452 E: 500, 501, 502, 421 SOML S: 250 F: 552, 451, 452 E: 500, 501, 502, 421 SAML S: 250 F: 552, 451, 452 E: 500, 501, 502, 421 VRFY S: 250, 251 F: 550, 551, 553 E: 500, 501, 502, 504, 421 EXPN S: 250 F: 550 E: 500, 501, 502, 504, 421 HELP S: 211, 214 E: 500, 501, 502, 504, 421 NOOP S: 250 E: 500, 421 QUIT S: 221 E: 500 TURN S: 250 F: 502 E: 500, 503 [Page 38] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol 4.4. STATE DIAGRAMS Following are state diagrams for a simple-minded SMTP implementation. Only the first digit of the reply codes is used. There is one state diagram for each group of SMTP commands. The command groupings were determined by constructing a model for each command and then collecting together the commands with structurally identical models. For each command there are three possible outcomes: "success" (S), "failure" (F), and "error" (E). In the state diagrams below we use the symbol B for "begin", and the symbol W for "wait for reply". First, the diagram that represents most of the SMTP commands: 1,3 +---+ ----------->| E | | +---+ | +---+ cmd +---+ 2 +---+ | B |---------->| W |---------->| S | +---+ +---+ +---+ | | 4,5 +---+ ----------->| F | +---+ This diagram models the commands: HELO, MAIL, RCPT, RSET, SEND, SOML, SAML, VRFY, EXPN, HELP, NOOP, QUIT, TURN. Postel [Page 39]
August 1982 RFC 821 Simple Mail Transfer Protocol A more complex diagram models the DATA command: +---+ DATA +---+ 1,2 +---+ | B |---------->| W |-------------------->| E | +---+ +---+ ------------>+---+ 3| |4,5 | | | | -------------- ----- | | | | +---+ | ---------- -------->| S | | | | | +---+ | | ------------ | | | | V 1,3| |2 | +---+ data +---+ --------------->+---+ | |---------->| W | | F | +---+ +---+-------------------->+---+ 4,5 Note that the "data" here is a series of lines sent from the sender to the receiver with no response expected until the last line is sent. [Page 40] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol 4.5. DETAILS 4.5.1. MINIMUM IMPLEMENTATION In order to make SMTP workable, the following minimum implementation is required for all receivers: COMMANDS -- HELO MAIL RCPT DATA RSET NOOP QUIT 4.5.2. TRANSPARENCY Without some provision for data transparency the character sequence "<CRLF>.<CRLF>" ends the mail text and cannot be sent by the user. In general, users are not aware of such "forbidden" sequences. To allow all user composed text to be transmitted transparently the following procedures are used. 1. Before sending a line of mail text the sender-SMTP checks the first character of the line. If it is a period, one additional period is inserted at the beginning of the line. 2. When a line of mail text is received by the receiver-SMTP it checks the line. If the line is composed of a single period it is the end of mail. If the first character is a period and there are other characters on the line, the first character is deleted. The mail data may contain any of the 128 ASCII characters. All characters are to be delivered to the recipient's mailbox including format effectors and other control characters. If the transmission channel provides an 8-bit byte (octets) data stream, the 7-bit ASCII codes are transmitted right justified in the octets with the high order bits cleared to zero. In some systems it may be necessary to transform the data as it is received and stored. This may be necessary for hosts that use a different character set than ASCII as their local character set, or that store data in records rather than Postel [Page 41]
August 1982 RFC 821 Simple Mail Transfer Protocol strings. If such transforms are necessary, they must be reversible -- especially if such transforms are applied to mail being relayed. 4.5.3. SIZES There are several objects that have required minimum maximum sizes. That is, every implementation must be able to receive objects of at least these sizes, but must not send objects larger than these sizes. **************************************************** * * * TO THE MAXIMUM EXTENT POSSIBLE, IMPLEMENTATION * * TECHNIQUES WHICH IMPOSE NO LIMITS ON THE LENGTH * * OF THESE OBJECTS SHOULD BE USED. * * * **************************************************** user The maximum total length of a user name is 64 characters. domain The maximum total length of a domain name or number is 64 characters. path The maximum total length of a reverse-path or forward-path is 256 characters (including the punctuation and element separators). command line The maximum total length of a command line including the command word and the <CRLF> is 512 characters. reply line The maximum total length of a reply line including the reply code and the <CRLF> is 512 characters. [Page 42] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol text line The maximum total length of a text line including the <CRLF> is 1000 characters (but not counting the leading dot duplicated for transparency). recipients buffer The maximum total number of recipients that must be buffered is 100 recipients. **************************************************** * * * TO THE MAXIMUM EXTENT POSSIBLE, IMPLEMENTATION * * TECHNIQUES WHICH IMPOSE NO LIMITS ON THE LENGTH * * OF THESE OBJECTS SHOULD BE USED. * * * **************************************************** Errors due to exceeding these limits may be reported by using the reply codes, for example: 500 Line too long. 501 Path too long 552 Too many recipients. 552 Too much mail data. Postel [Page 43]
August 1982 RFC 821 Simple Mail Transfer Protocol APPENDIX A TCP Transport service The Transmission Control Protocol [3] is used in the ARPA Internet, and in any network following the US DoD standards for internetwork protocols. Connection Establishment The SMTP transmission channel is a TCP connection established between the sender process port U and the receiver process port L. This single full duplex connection is used as the transmission channel. This protocol is assigned the service port 25 (31 octal), that is L=25. Data Transfer The TCP connection supports the transmission of 8-bit bytes. The SMTP data is 7-bit ASCII characters. Each character is transmitted as an 8-bit byte with the high-order bit cleared to zero. [Page 44] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol APPENDIX B NCP Transport service The ARPANET Host-to-Host Protocol [4] (implemented by the Network Control Program) may be used in the ARPANET. Connection Establishment The SMTP transmission channel is established via NCP between the sender process socket U and receiver process socket L. The Initial Connection Protocol [5] is followed resulting in a pair of simplex connections. This pair of connections is used as the transmission channel. This protocol is assigned the contact socket 25 (31 octal), that is L=25. Data Transfer The NCP data connections are established in 8-bit byte mode. The SMTP data is 7-bit ASCII characters. Each character is transmitted as an 8-bit byte with the high-order bit cleared to zero. Postel [Page 45]
August 1982 RFC 821 Simple Mail Transfer Protocol APPENDIX C NITS The Network Independent Transport Service [6] may be used. Connection Establishment The SMTP transmission channel is established via NITS between the sender process and receiver process. The sender process executes the CONNECT primitive, and the waiting receiver process executes the ACCEPT primitive. Data Transfer The NITS connection supports the transmission of 8-bit bytes. The SMTP data is 7-bit ASCII characters. Each character is transmitted as an 8-bit byte with the high-order bit cleared to zero. [Page 46] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol APPENDIX D X.25 Transport service It may be possible to use the X.25 service [7] as provided by the Public Data Networks directly, however, it is suggested that a reliable end-to-end protocol such as TCP be used on top of X.25 connections. Postel [Page 47]
August 1982 RFC 821 Simple Mail Transfer Protocol APPENDIX E Theory of Reply Codes The three digits of the reply each have a special significance. The first digit denotes whether the response is good, bad or incomplete. An unsophisticated sender-SMTP will be able to determine its next action (proceed as planned, redo, retrench, etc.) by simply examining this first digit. A sender-SMTP that wants to know approximately what kind of error occurred (e.g., mail system error, command syntax error) may examine the second digit, reserving the third digit for the finest gradation of information. There are five values for the first digit of the reply code: 1yz Positive Preliminary reply The command has been accepted, but the requested action is being held in abeyance, pending confirmation of the information in this reply. The sender-SMTP should send another command specifying whether to continue or abort the action. [Note: SMTP does not have any commands that allow this type of reply, and so does not have the continue or abort commands.] 2yz Positive Completion reply The requested action has been successfully completed. A new request may be initiated. 3yz Positive Intermediate reply The command has been accepted, but the requested action is being held in abeyance, pending receipt of further information. The sender-SMTP should send another command specifying this information. This reply is used in command sequence groups. 4yz Transient Negative Completion reply The command was not accepted and the requested action did not occur. However, the error condition is temporary and the action may be requested again. The sender should [Page 48] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol return to the beginning of the command sequence (if any). It is difficult to assign a meaning to "transient" when two different sites (receiver- and sender- SMTPs) must agree on the interpretation. Each reply in this category might have a different time value, but the sender-SMTP is encouraged to try again. A rule of thumb to determine if a reply fits into the 4yz or the 5yz category (see below) is that replies are 4yz if they can be repeated without any change in command form or in properties of the sender or receiver. (E.g., the command is repeated identically and the receiver does not put up a new implementation.) 5yz Permanent Negative Completion reply The command was not accepted and the requested action did not occur. The sender-SMTP is discouraged from repeating the exact request (in the same sequence). Even some "permanent" error conditions can be corrected, so the human user may want to direct the sender-SMTP to reinitiate the command sequence by direct action at some point in the future (e.g., after the spelling has been changed, or the user has altered the account status). The second digit encodes responses in specific categories: x0z Syntax -- These replies refer to syntax errors, syntactically correct commands that don't fit any functional category, and unimplemented or superfluous commands. x1z Information -- These are replies to requests for information, such as status or help. x2z Connections -- These are replies referring to the transmission channel. x3z Unspecified as yet. x4z Unspecified as yet. x5z Mail system -- These replies indicate the status of the receiver mail system vis-a-vis the requested transfer or other mail system action. The third digit gives a finer gradation of meaning in each category specified by the second digit. The list of replies Postel [Page 49]
August 1982 RFC 821 Simple Mail Transfer Protocol illustrates this. Each reply text is recommended rather than mandatory, and may even change according to the command with which it is associated. On the other hand, the reply codes must strictly follow the specifications in this section. Receiver implementations should not invent new codes for slightly different situations from the ones described here, but rather adapt codes already defined. For example, a command such as NOOP whose successful execution does not offer the sender-SMTP any new information will return a 250 reply. The response is 502 when the command requests an unimplemented non-site-specific action. A refinement of that is the 504 reply for a command that is implemented, but that requests an unimplemented parameter. The reply text may be longer than a single line; in these cases the complete text must be marked so the sender-SMTP knows when it can stop reading the reply. This requires a special format to indicate a multiple line reply. The format for multiline replies requires that every line, except the last, begin with the reply code, followed immediately by a hyphen, "-" (also known as minus), followed by text. The last line will begin with the reply code, followed immediately by <SP>, optionally some text, and <CRLF>. For example: 123-First line 123-Second line 123-234 text beginning with numbers 123 The last line In many cases the sender-SMTP then simply needs to search for the reply code followed by <SP> at the beginning of a line, and ignore all preceding lines. In a few cases, there is important data for the sender in the reply "text". The sender will know these cases from the current context. [Page 50] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol APPENDIX F Scenarios This section presents complete scenarios of several types of SMTP sessions. A Typical SMTP Transaction Scenario This SMTP example shows mail sent by Smith at host USC-ISIF, to Jones, Green, and Brown at host BBN-UNIX. Here we assume that host USC-ISIF contacts host BBN-UNIX directly. The mail is accepted for Jones and Brown. Green does not have a mailbox at host BBN-UNIX. ------------------------------------------------------------- R: 220 BBN-UNIX.ARPA Simple Mail Transfer Service Ready S: HELO USC-ISIF.ARPA R: 250 BBN-UNIX.ARPA S: MAIL FROM:<Smith@USC-ISIF.ARPA> R: 250 OK S: RCPT TO:<Jones@BBN-UNIX.ARPA> R: 250 OK S: RCPT TO:<Green@BBN-UNIX.ARPA> R: 550 No such user here S: RCPT TO:<Brown@BBN-UNIX.ARPA> R: 250 OK S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: . R: 250 OK S: QUIT R: 221 BBN-UNIX.ARPA Service closing transmission channel Scenario 1 ------------------------------------------------------------- Postel [Page 51]
August 1982 RFC 821 Simple Mail Transfer Protocol Aborted SMTP Transaction Scenario ------------------------------------------------------------- R: 220 MIT-Multics.ARPA Simple Mail Transfer Service Ready S: HELO ISI-VAXA.ARPA R: 250 MIT-Multics.ARPA S: MAIL FROM:<Smith@ISI-VAXA.ARPA> R: 250 OK S: RCPT TO:<Jones@MIT-Multics.ARPA> R: 250 OK S: RCPT TO:<Green@MIT-Multics.ARPA> R: 550 No such user here S: RSET R: 250 OK S: QUIT R: 221 MIT-Multics.ARPA Service closing transmission channel Scenario 2 ------------------------------------------------------------- [Page 52] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol Relayed Mail Scenario ------------------------------------------------------------- Step 1 -- Source Host to Relay Host R: 220 USC-ISIE.ARPA Simple Mail Transfer Service Ready S: HELO MIT-AI.ARPA R: 250 USC-ISIE.ARPA S: MAIL FROM:<JQP@MIT-AI.ARPA> R: 250 OK S: RCPT TO:<@USC-ISIE.ARPA:Jones@BBN-VAX.ARPA> R: 250 OK S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Date: 2 Nov 81 22:33:44 S: From: John Q. Public <JQP@MIT-AI.ARPA> S: Subject: The Next Meeting of the Board S: To: Jones@BBN-Vax.ARPA S: S: Bill: S: The next meeting of the board of directors will be S: on Tuesday. S: John. S: . R: 250 OK S: QUIT R: 221 USC-ISIE.ARPA Service closing transmission channel Postel [Page 53]
August 1982 RFC 821 Simple Mail Transfer Protocol Step 2 -- Relay Host to Destination Host R: 220 BBN-VAX.ARPA Simple Mail Transfer Service Ready S: HELO USC-ISIE.ARPA R: 250 BBN-VAX.ARPA S: MAIL FROM:<@USC-ISIE.ARPA:JQP@MIT-AI.ARPA> R: 250 OK S: RCPT TO:<Jones@BBN-VAX.ARPA> R: 250 OK S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Received: from MIT-AI.ARPA by USC-ISIE.ARPA ; 2 Nov 81 22:40:10 UT S: Date: 2 Nov 81 22:33:44 S: From: John Q. Public <JQP@MIT-AI.ARPA> S: Subject: The Next Meeting of the Board S: To: Jones@BBN-Vax.ARPA S: S: Bill: S: The next meeting of the board of directors will be S: on Tuesday. S: John. S: . R: 250 OK S: QUIT R: 221 USC-ISIE.ARPA Service closing transmission channel Scenario 3 ------------------------------------------------------------- [Page 54] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol Verifying and Sending Scenario ------------------------------------------------------------- R: 220 SU-SCORE.ARPA Simple Mail Transfer Service Ready S: HELO MIT-MC.ARPA R: 250 SU-SCORE.ARPA S: VRFY Crispin R: 250 Mark Crispin <Admin.MRC@SU-SCORE.ARPA> S: SEND FROM:<EAK@MIT-MC.ARPA> R: 250 OK S: RCPT TO:<Admin.MRC@SU-SCORE.ARPA> R: 250 OK S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: . R: 250 OK S: QUIT R: 221 SU-SCORE.ARPA Service closing transmission channel Scenario 4 ------------------------------------------------------------- Postel [Page 55]
August 1982 RFC 821 Simple Mail Transfer Protocol Sending and Mailing Scenarios First the user's name is verified, then an attempt is made to send to the user's terminal. When that fails, the messages is mailed to the user's mailbox. ------------------------------------------------------------- R: 220 SU-SCORE.ARPA Simple Mail Transfer Service Ready S: HELO MIT-MC.ARPA R: 250 SU-SCORE.ARPA S: VRFY Crispin R: 250 Mark Crispin <Admin.MRC@SU-SCORE.ARPA> S: SEND FROM:<EAK@MIT-MC.ARPA> R: 250 OK S: RCPT TO:<Admin.MRC@SU-SCORE.ARPA> R: 450 User not active now S: RSET R: 250 OK S: MAIL FROM:<EAK@MIT-MC.ARPA> R: 250 OK S: RCPT TO:<Admin.MRC@SU-SCORE.ARPA> R: 250 OK S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: . R: 250 OK S: QUIT R: 221 SU-SCORE.ARPA Service closing transmission channel Scenario 5 ------------------------------------------------------------- [Page 56] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol Doing the preceding scenario more efficiently. ------------------------------------------------------------- R: 220 SU-SCORE.ARPA Simple Mail Transfer Service Ready S: HELO MIT-MC.ARPA R: 250 SU-SCORE.ARPA S: VRFY Crispin R: 250 Mark Crispin <Admin.MRC@SU-SCORE.ARPA> S: SOML FROM:<EAK@MIT-MC.ARPA> R: 250 OK S: RCPT TO:<Admin.MRC@SU-SCORE.ARPA> R: 250 User not active now, so will do mail. S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: . R: 250 OK S: QUIT R: 221 SU-SCORE.ARPA Service closing transmission channel Scenario 6 ------------------------------------------------------------- Postel [Page 57]
August 1982 RFC 821 Simple Mail Transfer Protocol Mailing List Scenario First each of two mailing lists are expanded in separate sessions with different hosts. Then the message is sent to everyone that appeared on either list (but no duplicates) via a relay host. ------------------------------------------------------------- Step 1 -- Expanding the First List R: 220 MIT-AI.ARPA Simple Mail Transfer Service Ready S: HELO SU-SCORE.ARPA R: 250 MIT-AI.ARPA S: EXPN Example-People R: 250-<ABC@MIT-MC.ARPA> R: 250-Fred Fonebone <Fonebone@USC-ISIQ.ARPA> R: 250-Xenon Y. Zither <XYZ@MIT-AI.ARPA> R: 250-Quincy Smith <@USC-ISIF.ARPA:Q-Smith@ISI-VAXA.ARPA> R: 250-<joe@foo-unix.ARPA> R: 250 <xyz@bar-unix.ARPA> S: QUIT R: 221 MIT-AI.ARPA Service closing transmission channel [Page 58] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol Step 2 -- Expanding the Second List R: 220 MIT-MC.ARPA Simple Mail Transfer Service Ready S: HELO SU-SCORE.ARPA R: 250 MIT-MC.ARPA S: EXPN Interested-Parties R: 250-Al Calico <ABC@MIT-MC.ARPA> R: 250-<XYZ@MIT-AI.ARPA> R: 250-Quincy Smith <@USC-ISIF.ARPA:Q-Smith@ISI-VAXA.ARPA> R: 250-<fred@BBN-UNIX.ARPA> R: 250 <xyz@bar-unix.ARPA> S: QUIT R: 221 MIT-MC.ARPA Service closing transmission channel Postel [Page 59]
August 1982 RFC 821 Simple Mail Transfer Protocol Step 3 -- Mailing to All via a Relay Host R: 220 USC-ISIE.ARPA Simple Mail Transfer Service Ready S: HELO SU-SCORE.ARPA R: 250 USC-ISIE.ARPA S: MAIL FROM:<Account.Person@SU-SCORE.ARPA> R: 250 OK S: RCPT TO:<@USC-ISIE.ARPA:ABC@MIT-MC.ARPA> R: 250 OK S: RCPT TO:<@USC-ISIE.ARPA:Fonebone@USC-ISIQA.ARPA> R: 250 OK S: RCPT TO:<@USC-ISIE.ARPA:XYZ@MIT-AI.ARPA> R: 250 OK S: RCPT TO:<@USC-ISIE.ARPA,@USC-ISIF.ARPA:Q-Smith@ISI-VAXA.ARPA> R: 250 OK S: RCPT TO:<@USC-ISIE.ARPA:joe@FOO-UNIX.ARPA> R: 250 OK S: RCPT TO:<@USC-ISIE.ARPA:xyz@BAR-UNIX.ARPA> R: 250 OK S: RCPT TO:<@USC-ISIE.ARPA:fred@BBN-UNIX.ARPA> R: 250 OK S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: . R: 250 OK S: QUIT R: 221 USC-ISIE.ARPA Service closing transmission channel Scenario 7 ------------------------------------------------------------- [Page 60] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol Forwarding Scenarios ------------------------------------------------------------- R: 220 USC-ISIF.ARPA Simple Mail Transfer Service Ready S: HELO LBL-UNIX.ARPA R: 250 USC-ISIF.ARPA S: MAIL FROM:<mo@LBL-UNIX.ARPA> R: 250 OK S: RCPT TO:<fred@USC-ISIF.ARPA> R: 251 User not local; will forward to <Jones@USC-ISI.ARPA> S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: . R: 250 OK S: QUIT R: 221 USC-ISIF.ARPA Service closing transmission channel Scenario 8 ------------------------------------------------------------- Postel [Page 61]
August 1982 RFC 821 Simple Mail Transfer Protocol ------------------------------------------------------------- Step 1 -- Trying the Mailbox at the First Host R: 220 USC-ISIF.ARPA Simple Mail Transfer Service Ready S: HELO LBL-UNIX.ARPA R: 250 USC-ISIF.ARPA S: MAIL FROM:<mo@LBL-UNIX.ARPA> R: 250 OK S: RCPT TO:<fred@USC-ISIF.ARPA> R: 251 User not local; will forward to <Jones@USC-ISI.ARPA> S: RSET R: 250 OK S: QUIT R: 221 USC-ISIF.ARPA Service closing transmission channel Step 2 -- Delivering the Mail at the Second Host R: 220 USC-ISI.ARPA Simple Mail Transfer Service Ready S: HELO LBL-UNIX.ARPA R: 250 USC-ISI.ARPA S: MAIL FROM:<mo@LBL-UNIX.ARPA> R: 250 OK S: RCPT TO:<Jones@USC-ISI.ARPA> R: OK S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: . R: 250 OK S: QUIT R: 221 USC-ISI.ARPA Service closing transmission channel Scenario 9 ------------------------------------------------------------- [Page 62] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol Too Many Recipients Scenario ------------------------------------------------------------- R: 220 BERKELEY.ARPA Simple Mail Transfer Service Ready S: HELO USC-ISIF.ARPA R: 250 BERKELEY.ARPA S: MAIL FROM:<Postel@USC-ISIF.ARPA> R: 250 OK S: RCPT TO:<fabry@BERKELEY.ARPA> R: 250 OK S: RCPT TO:<eric@BERKELEY.ARPA> R: 552 Recipient storage full, try again in another transaction S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: . R: 250 OK S: MAIL FROM:<Postel@USC-ISIF.ARPA> R: 250 OK S: RCPT TO:<eric@BERKELEY.ARPA> R: 250 OK S: DATA R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah... S: ...etc. etc. etc. S: . R: 250 OK S: QUIT R: 221 BERKELEY.ARPA Service closing transmission channel Scenario 10 ------------------------------------------------------------- Note that a real implementation must handle many recipients as specified in Section 4.5.3. Postel [Page 63]
August 1982 RFC 821 Simple Mail Transfer Protocol GLOSSARY ASCII American Standard Code for Information Interchange [1]. command A request for a mail service action sent by the sender-SMTP to the receiver-SMTP. domain The hierarchially structured global character string address of a host computer in the mail system. end of mail data indication A special sequence of characters that indicates the end of the mail data. In particular, the five characters carriage return, line feed, period, carriage return, line feed, in that order. host A computer in the internetwork environment on which mailboxes or SMTP processes reside. line A a sequence of ASCII characters ending with a <CRLF>. mail data A sequence of ASCII characters of arbitrary length, which conforms to the standard set in the Standard for the Format of ARPA Internet Text Messages (RFC 822 [2]). mailbox A character string (address) which identifies a user to whom mail is to be sent. Mailbox normally consists of the host and user specifications. The standard mailbox naming convention is defined to be "user@domain". Additionally, the "container" in which mail is stored. [Page 64] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol receiver-SMTP process A process which transfers mail in cooperation with a sender-SMTP process. It waits for a connection to be established via the transport service. It receives SMTP commands from the sender-SMTP, sends replies, and performs the specified operations. reply A reply is an acknowledgment (positive or negative) sent from receiver to sender via the transmission channel in response to a command. The general form of a reply is a completion code (including error codes) followed by a text string. The codes are for use by programs and the text is usually intended for human users. sender-SMTP process A process which transfers mail in cooperation with a receiver-SMTP process. A local language may be used in the user interface command/reply dialogue. The sender-SMTP initiates the transport service connection. It initiates SMTP commands, receives replies, and governs the transfer of mail. session The set of exchanges that occur while the transmission channel is open. transaction The set of exchanges required for one message to be transmitted for one or more recipients. transmission channel A full-duplex communication path between a sender-SMTP and a receiver-SMTP for the exchange of commands, replies, and mail text. transport service Any reliable stream-oriented data communication services. For example, NCP, TCP, NITS. Postel [Page 65]
August 1982 RFC 821 Simple Mail Transfer Protocol user A human being (or a process on behalf of a human being) wishing to obtain mail transfer service. In addition, a recipient of computer mail. word A sequence of printing characters. <CRLF> The characters carriage return and line feed (in that order). <SP> The space character. [Page 66] Postel
RFC 821 August 1982 Simple Mail Transfer Protocol REFERENCES [1] ASCII ASCII, "USA Code for Information Interchange", United States of America Standards Institute, X3.4, 1968. Also in: Feinler, E. and J. Postel, eds., "ARPANET Protocol Handbook", NIC 7104, for the Defense Communications Agency by SRI International, Menlo Park, California, Revised January 1978. [2] RFC 822 Crocker, D., "Standard for the Format of ARPA Internet Text Messages," RFC 822, Department of Electrical Engineering, University of Delaware, August 1982. [3] TCP Postel, J., ed., "Transmission Control Protocol - DARPA Internet Program Protocol Specification", RFC 793, USC/Information Sciences Institute, NTIS AD Number A111091, September 1981. Also in: Feinler, E. and J. Postel, eds., "Internet Protocol Transition Workbook", SRI International, Menlo Park, California, March 1982. [4] NCP McKenzie,A., "Host/Host Protocol for the ARPA Network", NIC 8246, January 1972. Also in: Feinler, E. and J. Postel, eds., "ARPANET Protocol Handbook", NIC 7104, for the Defense Communications Agency by SRI International, Menlo Park, California, Revised January 1978. [5] Initial Connection Protocol Postel, J., "Official Initial Connection Protocol", NIC 7101, 11 June 1971. Also in: Feinler, E. and J. Postel, eds., "ARPANET Protocol Handbook", NIC 7104, for the Defense Communications Agency by SRI International, Menlo Park, California, Revised January 1978. [6] NITS PSS/SG3, "A Network Independent Transport Service", Study Group 3, The Post Office PSS Users Group, February 1980. Available from the DCPU, National Physical Laboratory, Teddington, UK. Postel [Page 67]
August 1982 RFC 821 Simple Mail Transfer Protocol [7] X.25 CCITT, "Recommendation X.25 - Interface Between Data Terminal Equipment (DTE) and Data Circuit-terminating Equipment (DCE) for Terminals Operating in the Packet Mode on Public Data Networks," CCITT Orange Book, Vol. VIII.2, International Telephone and Telegraph Consultative Committee, Geneva, 1976. [Page 68] Postel
========================================================================= Network Working Group Craig Partridge Request for Comments: 974 CSNET CIC BBN Laboratories Inc January 1986 MAIL ROUTING AND THE DOMAIN SYSTEM Status of this Memo This RFC presents a description of how mail systems on the Internet are expected to route messages based on information from the domain system described in RFCs 882, 883 and 973. Distribution of this memo is unlimited. Introduction The purpose of this memo is to explain how mailers are to decide how to route a message addressed to a given Internet domain name. This involves a discussion of how mailers interpret MX RRs, which are used for message routing. Note that this memo makes no statement about how mailers are to deal with MB and MG RRs, which are used for interpreting mailbox names. Under RFC-882 and RFC-883 certain assumptions about mail addresses have been changed. Up to now, one could usually assume that if a message was addressed to a mailbox, for example, at LOKI.BBN.COM, that one could just open an SMTP connection to LOKI.BBN.COM and pass the message along. This system broke down in certain situations, such as for certain UUCP and CSNET hosts which were not directly attached to the Internet, but these hosts could be handled as special cases in configuration files (for example, most mailers were set up to automatically forward mail addressed to a CSNET host to CSNET-RELAY.ARPA). Under domains, one cannot simply open a connection to LOKI.BBN.COM, but must instead ask the domain system where messages to LOKI.BBN.COM are to be delivered. And the domain system may direct a mailer to deliver messages to an entirely different host, such as SH.CS.NET. Or, in a more complicated case, the mailer may learn that it has a choice of routes to LOKI.BBN.COM. This memo is essentially a set of guidelines on how mailers should behave in this more complex world. Readers are expected to be familiar with RFCs 882, 883, and the updates to them (e.g., RFC-973). Partridge [Page 1]
RFC 974 January 1986 Mail Routing and the Domain System What the Domain Servers Know The domain servers store information as a series of resource records (RRs), each of which contains a particular piece of information about a given domain name (which is usually, but not always, a host). The simplest way to think of a RR is as a typed pair of datum, a domain name matched with relevant data, and stored with some additional type information to help systems determine when the RR is relevant. For the purposes of message routing, the system stores RRs known as MX RRs. Each MX matches a domain name with two pieces of data, a preference value (an unsigned 16-bit integer), and the name of a host. The preference number is used to indicate in what order the mailer should attempt deliver to the MX hosts, with the lowest numbered MX being the one to try first. Multiple MXs with the same preference are permitted and have the same priority. In addition to mail information, the servers store certain other types of RR's which mailers may encounter or choose to use. These are: the canonical name (CNAME) RR, which simply states that the domain name queried for is actually an alias for another domain name, which is the proper, or canonical, name; and the Well Known Service (WKS) RR, which stores information about network services (such as SMTP) a given domain name supports. General Routing Guidelines Before delving into a detailed discussion of how mailers are expected to do mail routing, it would seem to make sense to give a brief overview of how this memo is approaching the problems that routing poses. The first major principle is derived from the definition of the preference field in MX records, and is intended to prevent mail looping. If the mailer is on a host which is listed as an MX for the destination host, the mailer may only deliver to an MX which has a lower preference count than its own host. It is also possible to cause mail looping because routing information is out of date or incomplete. Out of date information is only a problem when domain tables are changed. The changes will not be known to all affected hosts until their resolver caches time out. There is no way to ensure that this will not happen short of requiring mailers and their resolvers to always send their queries to an authoritative server, and never use data stored in a cache. This is an impractical solution, since eliminating resolver caching would make mailing inordinately expensive. What is more, the out-of-date RR problem should not happen if, when a domain table is changed, Partridge [Page 2]
RFC 974 January 1986 Mail Routing and the Domain System affected hosts (those in the list of MXs) have their resolver caches flushed. In other words, given proper precautions, mail looping as a result of domain information should be avoidable, without requiring mailers to query authoritative servers. (The appropriate precaution is to check with a host's administrator before adding that host to a list of MXs). The incomplete data problem also requires some care when handling domain queries. If the answer section of a query is incomplete critical MX RRs may be left out. This may result in mail looping, or in a message being mistakenly labelled undeliverable. As a result, mailers may only accept responses from the domain system which have complete answer sections. Note that this entire problem can be avoided by only using virtual circuits for queries, but since this situation is likely to be very rare and datagrams are the preferred way to interact with the domain system, implementors should probably just ensure that their mailer will repeat a query with virtual circuits should the truncation bit ever be set. Determining Where to Send a Message The explanation of how mailers should decide how to route a message is discussed in terms of the problem of a mailer on a host with domain name LOCAL trying to deliver a message addressed to the domain name REMOTE. Both LOCAL and REMOTE are assumed to be syntactically correct domain names. Furthermore, LOCAL is assumed to be the official name for the host on which the mailer resides (i.e., it is not a alias). Issuing a Query The first step for the mailer at LOCAL is to issue a query for MX RRs for REMOTE. It is strongly urged that this step be taken every time a mailer attempts to send the message. The hope is that changes in the domain database will rapidly be used by mailers, and thus domain administrators will be able to re-route in-transit messages for defective hosts by simply changing their domain databases. Certain responses to the query are considered errors: Getting no response to the query. The domain server the mailer queried never sends anything back. (This is distinct from an answer which contains no answers to the query, which is not an error). Getting a response in which the truncation field of the header is Partridge [Page 3]
RFC 974 January 1986 Mail Routing and the Domain System set. (Recall discussion of incomplete queries above). Mailers may not use responses of this type, and should repeat the query using virtual circuits instead of datagrams. Getting a response in which the response code is non-zero. Mailers are expected to do something reasonable in the face of an error. The behaviour for each type of error is not specified here, but implementors should note that different types of errors should probably be treated differently. For example, a response code of "non-existent domain" should probably cause the message to be returned to the sender as invalid, while a response code of "server failure" should probably cause the message to be retried later. There is one other special case. If the response contains an answer which is a CNAME RR, it indicates that REMOTE is actually an alias for some other domain name. The query should be repeated with the canonical domain name. If the response does not contain an error response, and does not contain aliases, its answer section should be a (possibly zero length) list of MX RRs for domain name REMOTE (or REMOTE's true domain name if REMOTE was a alias). The next section describes how this list is interpreted. Interpreting the List of MX RRs NOTE: This section only discusses how mailers choose which names to try to deliver a message to, working from a list of RR's. It does not discuss how the mailers actually make delivery. Where ever delivering a message is mentioned, all that is meant is that the mailer should do whatever it needs to do to transfer a message to a remote site, given a domain name for that site. (For example, an SMTP mailer will try to get an address for the domain name, which involves another query to the domain system, and then, if it gets an address, connect to the SMTP TCP port). The mechanics of actually transferring the message over the network to the address associated with a given domain name is not within the scope of this memo. It is possible that the list of MXs in the response to the query will be empty. This is a special case. If the list is empty, mailers should treat it as if it contained one RR, an MX RR with a preference value of 0, and a host name of REMOTE. (I.e., REMOTE is its only MX). In addition, the mailer should do no further processing on the list, but should attempt to deliver the message to REMOTE. The idea Partridge [Page 4]
RFC 974 January 1986 Mail Routing and the Domain System here is that if a domain fails to advertise any information about a particular name we will give it the benefit of the doubt and attempt delivery. If the list is not empty, the mailer should remove irrelevant RR's from the list according to the following steps. Note that the order is significant. For each MX, a WKS query should be issued to see if the domain name listed actually supports the mail service desired. MX RRs which list domain names which do not support the service should be discarded. This step is optional, but strongly encouraged. If the domain name LOCAL is listed as an MX RR, all MX RRs with a preference value greater than or equal to that of LOCAL's must be discarded. After removing irrelevant RRs, the list can again be empty. This is now an error condition and can occur in several ways. The simplest case is that the WKS queries have discovered that none of the hosts listed supports the mail service desired. The message is thus deemed undeliverable, though extremely persistent mail systems might want to try a delivery to REMOTE's address (if it exists) before returning the message. Another, more dangerous, possibility is that the domain system believes that LOCAL is handling message for REMOTE, but the mailer on LOCAL is not set up to handle mail for REMOTE. For example, if the domain system lists LOCAL as the only MX for REMOTE, LOCAL will delete all the entries in the list. But LOCAL is presumably querying the domain system because it didn't know what to do with a message addressed to REMOTE. Clearly something is wrong. How a mailer chooses to handle these situations is to some extent implementation dependent, and is thus left to the implementor's discretion. If the list of MX RRs is not empty, the mailer should try to deliver the message to the MXs in order (lowest preference value tried first). The mailer is required to attempt delivery to the lowest valued MX. Implementors are encouraged to write mailers so that they try the MXs in order until one of the MXs accepts the message, or all the MXs have been tried. A somewhat less demanding system, in which a fixed number of MXs is tried, is also reasonable. Note that multiple MXs may have the same preference value. In this case, all MXs at with a given value must be tried before any of a higher value are tried. In addition, in the special case in which there are several MXs with the lowest preference value, all of them should be tried before a message is deemed undeliverable. Partridge [Page 5]
RFC 974 January 1986 Mail Routing and the Domain System Minor Special Issues There are a couple of special issues left out of the preceding section because they complicated the discussion. They are treated here in no particular order. Wildcard names, those containing the character '*' in them, may be used for mail routing. There are likely to be servers on the network which simply state that any mail to a domain is to be routed through a relay. For example, at the time that this RFC is being written, all mail to hosts in the domain IL is routed through RELAY.CS.NET. This is done by creating a wildcard RR, which states that *.IL has an MX of RELAY.CS.NET. This should be transparent to the mailer since the domain servers will hide this wildcard match. (If it matches *.IL with HUJI.IL for example, a domain server will return an RR containing HUJI.IL, not *.IL). If by some accident a mailer receives an RR with a wildcard domain name in its name or data section it should discard the RR. Note that the algorithm to delete irrelevant RRs breaks if LOCAL has a alias and the alias is listed in the MX records for REMOTE. (E.g. REMOTE has an MX of ALIAS, where ALIAS has a CNAME of LOCAL). This can be avoided if aliases are never used in the data section of MX RRs. Implementors should understand that the query and interpretation of the query is only performed for REMOTE. It is not repeated for the MX RRs listed for REMOTE. You cannot try to support more extravagant mail routing by building a chain of MXs. (E.g. UNIX.BBN.COM is an MX for RELAY.CS.NET and RELAY.CS.NET is an MX for all the hosts in .IL, but this does not mean that UNIX.BBN.COM accepts any responsibility for mail for .IL). Finally, it should be noted that this is a standard for routing on the Internet. Mailers serving hosts which lie on multiple networks will presumably have to make some decisions about which network to route through. This decision making is outside the scope of this memo, although mailers may well use the domain system to help them decide. However, once a mailer decides to deliver a message via the Internet it must apply these rules to route the message. Partridge [Page 6]
RFC 974 January 1986 Mail Routing and the Domain System Examples To illustrate the discussion above, here are three examples of how mailers should route messages. All examples work with the following database: A.EXAMPLE.ORG IN MX 10 A.EXAMPLE.ORG A.EXAMPLE.ORG IN MX 15 B.EXAMPLE.ORG A.EXAMPLE.ORG IN MX 20 C.EXAMPLE.ORG A.EXAMPLE.ORG IN WKS 10.0.0.1 TCP SMTP B.EXAMPLE.ORG IN MX 0 B.EXAMPLE.ORG B.EXAMPLE.ORG IN MX 10 C.EXAMPLE.ORG B.EXAMPLE.ORG IN WKS 10.0.0.2 TCP SMTP C.EXAMPLE.ORG IN MX 0 C.EXAMPLE.ORG C.EXAMPLE.ORG IN WKS 10.0.0.3 TCP SMTP D.EXAMPLE.ORG IN MX 0 D.EXAMPLE.ORG D.EXAMPLE.ORG IN MX 0 C.EXAMPLE.ORG D.EXAMPLE.ORG IN WKS 10.0.0.4 TCP SMTP In the first example, an SMTP mailer on D.EXAMPLE.ORG is trying to deliver a message addressed to A.EXAMPLE.ORG. From the answer to its query, it learns that A.EXAMPLE.ORG has three MX RRs. D.EXAMPLE.ORG is not one of the MX RRs and all three MXs support SMTP mail (determined from the WKS entries), so none of the MXs are eliminated. The mailer is obliged to try to deliver to A.EXAMPLE.ORG as the lowest valued MX. If it cannot reach A.EXAMPLE.ORG it can (but is not required to) try B.EXAMPLE.ORG. and if B.EXAMPLE.ORG is not responding, it can try C.EXAMPLE.ORG. In the second example, the mailer is on B.EXAMPLE.ORG, and is again trying to deliver a message addressed to A.EXAMPLE.ORG. There are once again three MX RRs for A.EXAMPLE.ORG, but in this case the mailer must discard the RRs for itself and C.EXAMPLE.ORG (because the MX RR for C.EXAMPLE.ORG has a higher preference value than the RR for B.EXAMPLE.ORG). It is left only with the RR for A.EXAMPLE.ORG, and can only try delivery to A.EXAMPLE.ORG. In the third example, consider a mailer on A.EXAMPLE.ORG trying to deliver a message to D.EXAMPLE.ORG. In this case there are only two MX RRs, both with the same preference value. Either MX will accept messages for D.EXAMPLE.ORG. The mailer should try one MX first (which one is up to the mailer, though D.EXAMPLE.ORG seems most reasonable), and if that delivery fails should try the other MX (e.g. C.EXAMPLE.ORG). Partridge [Page 7]
========================================================================= Network Working Group J. Klensin, WG Chair Request For Comments: 1869 MCI STD: 10 N. Freed, Editor Obsoletes: 1651 Innosoft International, Inc. Category: Standards Track M. Rose Dover Beach Consulting, Inc. E. Stefferud Network Management Associates, Inc. D. Crocker Brandenburg Consulting November 1995 SMTP Service Extensions Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. 1. Abstract This memo defines a framework for extending the SMTP service by defining a means whereby a server SMTP can inform a client SMTP as to the service extensions it supports. Extensions to the SMTP service are registered with the IANA. This framework does not require modification of existing SMTP clients or servers unless the features of the service extensions are to be requested or provided. 2. Introduction The Simple Mail Transfer Protocol (SMTP) [1] has provided a stable, effective basis for the relay function of message transfer agents. Although a decade old, SMTP has proven remarkably resilient. Nevertheless, the need for a number of protocol extensions has become evident. Rather than describing these extensions as separate and haphazard entities, this document enhances SMTP in a straightforward fashion that provides a framework in which all future extensions can be built in a single consistent way. 3. Framework for SMTP Extensions For the purpose of service extensions to SMTP, SMTP relays a mail object containing an envelope and a content. Klensin, et al Standards Track [Page 1]
RFC 1869 SMTP Service Extensions November 1995 (1) The SMTP envelope is straightforward, and is sent as a series of SMTP protocol units: it consists of an originator address (to which error reports should be directed); a delivery mode (e.g., deliver to recipient mailboxes); and, one or more recipient addresses. (2) The SMTP content is sent in the SMTP DATA protocol unit and has two parts: the headers and the body. The headers form a collection of field/value pairs structured according to RFC 822 [2], whilst the body, if structured, is defined according to MIME [3]. The content is textual in nature, expressed using the US ASCII repertoire (ANSI X3.4-1986). Although extensions (such as MIME) may relax this restriction for the content body, the content headers are always encoded using the US ASCII repertoire. The algorithm defined in [4] is used to represent header values outside the US ASCII repertoire, whilst still encoding them using the US ASCII repertoire. Although SMTP is widely and robustly deployed, some parts of the Internet community might wish to extend the SMTP service. This memo defines a means whereby both an extended SMTP client and server may recognize each other as such and the server can inform the client as to the service extensions that it supports. It must be emphasized that any extension to the SMTP service should not be considered lightly. SMTP's strength comes primarily from its simplicity. Experience with many protocols has shown that: protocols with few options tend towards ubiquity, whilst protocols with many options tend towards obscurity. This means that each and every extension, regardless of its benefits, must be carefully scrutinized with respect to its implementation, deployment, and interoperability costs. In many cases, the cost of extending the SMTP service will likely outweigh the benefit. Given this environment, the framework for the extensions described in this memo consists of: (1) a new SMTP command (section 4) (2) a registry of SMTP service extensions (section 5) (3) additional parameters to the SMTP MAIL FROM and RCPT TO commands (section 6). Klensin, et al Standards Track [Page 2]
RFC 1869 SMTP Service Extensions November 1995 4. The EHLO command A client SMTP supporting SMTP service extensions should start an SMTP session by issuing the EHLO command instead of the HELO command. If the SMTP server supports the SMTP service extensions it will give a successful response (see section 4.3), a failure response (see 4.4), or an error response (4.5). If the SMTP server does not support any SMTP service extensions it will generate an error response (see section 4.5). 4.1. Changes to STD 10, RFC 821 This specification is intended to extend STD 10, RFC 821 without impacting existing services in any way. The minor changes needed are enumerated below. 4.1.1. First command RFC 821 states that the first command in an SMTP session must be the HELO command. This requirement is hereby amended to allow a session to start with either EHLO or HELO. 4.1.2. Maximum command line length This specification extends the SMTP MAIL FROM and RCPT TO to allow additional parameters and parameter values. It is possible that the MAIL FROM and RCPT TO lines that result will exceed the 512 character limit on command line length imposed by RFC 821. This limit is hereby amended to only apply to command lines without any parameters. Each specification that defines new MAIL FROM or RCPT TO parameters must also specify maximum parameter value lengths for each parameter so that implementors of some set of extensions know how much buffer space must be allocated. The maximum command length that must be supported by an SMTP implementation with extensions is 512 plus the sum of all the maximum parameter lengths for all the extensions supported. 4.2. Command syntax The syntax for this command, using the ABNF notation of [2], is: ehlo-cmd ::= "EHLO" SP domain CR LF If successful, the server SMTP responds with code 250. On failure, the server SMTP responds with code 550. On error, the server SMTP responds with one of codes 500, 501, 502, 504, or 421. Klensin, et al Standards Track [Page 3]
RFC 1869 SMTP Service Extensions November 1995 This command is issued instead of the HELO command, and may be issued at any time that a HELO command would be appropriate. That is, if the EHLO command is issued, and a successful response is returned, then a subsequent HELO or EHLO command will result in the server SMTP replying with code 503. A client SMTP must not cache any information returned if the EHLO command succeeds. That is, a client SMTP must issue the EHLO command at the start of each SMTP session if information about extended facilities is needed. 4.3. Successful response If the server SMTP implements and is able to perform the EHLO command, it will return code 250. This indicates that both the server and client SMTP are in the initial state, that is, there is no transaction in progress and all state tables and buffers are cleared. Normally, this response will be a multiline reply. Each line of the response contains a keyword and, optionally, one or more parameters. The syntax for a positive response, using the ABNF notation of [2], is: ehlo-ok-rsp ::= "250" domain [ SP greeting ] CR LF / ( "250-" domain [ SP greeting ] CR LF *( "250-" ehlo-line CR LF ) "250" SP ehlo-line CR LF ) ; the usual HELO chit-chat greeting ::= 1*<any character other than CR or LF> ehlo-line ::= ehlo-keyword *( SP ehlo-param ) ehlo-keyword ::= (ALPHA / DIGIT) *(ALPHA / DIGIT / "-") ; syntax and values depend on ehlo-keyword ehlo-param ::= 1*<any CHAR excluding SP and all control characters (US ASCII 0-31 inclusive)> ALPHA ::= <any one of the 52 alphabetic characters (A through Z in upper case, and, a through z in lower case)> DIGIT ::= <any one of the 10 numeric characters (0 through 9)> CR ::= <the carriage-return character (ASCII decimal code 13)> LF ::= <the line-feed character (ASCII decimal code 10)> Klensin, et al Standards Track [Page 4]
RFC 1869 SMTP Service Extensions November 1995 SP ::= <the space character (ASCII decimal code 32)> Although EHLO keywords may be specified in upper, lower, or mixed case, they must always be recognized and processed in a case- insensitive manner. This is simply an extension of practices begun in RFC 821. The IANA maintains a registry of SMTP service extensions. Associated with each such extension is a corresponding EHLO keyword value. Each service extension registered with the IANA must be defined in an RFC. Such RFCs must either be on the standards-track or must define an IESG-approved experimental protocol. The definition must include: (1) the textual name of the SMTP service extension; (2) the EHLO keyword value associated with the extension; (3) the syntax and possible values of parameters associated with the EHLO keyword value; (4) any additional SMTP verbs associated with the extension (additional verbs will usually be, but are not required to be, the same as the EHLO keyword value); (5) any new parameters the extension associates with the MAIL FROM or RCPT TO verbs; (6) how support for the extension affects the behavior of a server and client SMTP; and, (7) the increment by which the extension is increasing the maximum length of the commands MAIL FROM, RCPT TO, or both, over that specified in RFC 821. In addition, any EHLO keyword value that starts with an upper or lower case "X" refers to a local SMTP service extension, which is used through bilateral, rather than standardized, agreement. Keywords beginning with "X" may not be used in a registered service extension. Any keyword values presented in the EHLO response that do not begin with "X" must correspond to a standard, standards-track, or IESG- approved experimental SMTP service extension registered with IANA. A conforming server must not offer non "X" prefixed keyword values that are not described in a registered extension. Klensin, et al Standards Track [Page 5]
RFC 1869 SMTP Service Extensions November 1995 Additional verbs are bound by the same rules as EHLO keywords; specifically, verbs begining with "X" are local extensions that may not be registered or standardized and verbs not beginning with "X" must always be registered. 4.4. Failure response If for some reason the server SMTP is unable to list the service extensions it supports, it will return code 554. In the case of a failure response, the client SMTP should issue either the HELO or QUIT command. 4.5. Error responses from extended servers If the server SMTP recognizes the EHLO command, but the command argument is unacceptable, it will return code 501. If the server SMTP recognizes, but does not implement, the EHLO command, it will return code 502. If the server SMTP determines that the SMTP service is no longer available (e.g., due to imminent system shutdown), it will return code 421. In the case of any error response, the client SMTP should issue either the HELO or QUIT command. 4.6. Responses from servers without extensions A server SMTP that conforms to RFC 821 but does not support the extensions specified here will not recognize the EHLO command and will consequently return code 500, as specified in RFC 821. The server SMTP should stay in the same state after returning this code (see section 4.1.1 of RFC 821). The client SMTP may then issue either a HELO or a QUIT command. 4.7. Responses from improperly implemented servers Some SMTP servers are known to disconnect the SMTP transmission channel upon receipt of the EHLO command. The disconnect can occur immediately or after sending a response. Such behavior violates section 4.1.1 of RFC 821, which explicitly states that disconnection should only occur after a QUIT command is issued. Nevertheless, in order to achieve maxmimum interoperablity it is suggested that extended SMTP clients using EHLO be coded to check for server connection closure after EHLO is sent, either before or after Klensin, et al Standards Track [Page 6]
RFC 1869 SMTP Service Extensions November 1995 returning a reply. If this happens the client must decide if the operation can be successfully completed without using any SMTP extensions. If it can a new connection can be opened and the HELO command can be used. Other improperly-implemented servers will not accept a HELO command after EHLO has been sent and rejected. In some cases, this problem can be worked around by sending a RSET after the failure response to EHLO, then sending the HELO. Clients that do this should be aware that many implementations will return a failure code (e.g., 503 Bad sequence of commands) in response to the RSET. This code can be safely ignored. 5. Initial IANA Registry The IANA's initial registry of SMTP service extensions consists of these entries: Service Ext EHLO Keyword Parameters Verb Added Behavior ------------- ------------ ---------- ---------- ------------------ Send SEND none SEND defined in RFC 821 Send or Mail SOML none SOML defined in RFC 821 Send and Mail SAML none SAML defined in RFC 821 Expand EXPN none EXPN defined in RFC 821 Help HELP none HELP defined in RFC 821 Turn TURN none TURN defined in RFC 821 which correspond to those SMTP commands which are defined as optional in [5]. (The mandatory SMTP commands, according to [5], are HELO, MAIL, RCPT, DATA, RSET, VRFY, NOOP, and QUIT.) 6. MAIL FROM and RCPT TO Parameters It is recognized that several of the extensions planned for SMTP will make use of additional parameters associated with the MAIL FROM and RCPT TO command. The syntax for these commands, again using the ABNF notation of [2] as well as underlying definitions from [1], is: esmtp-cmd ::= inner-esmtp-cmd [SP esmtp-parameters] CR LF esmtp-parameters ::= esmtp-parameter *(SP esmtp-parameter) esmtp-parameter ::= esmtp-keyword ["=" esmtp-value] esmtp-keyword ::= (ALPHA / DIGIT) *(ALPHA / DIGIT / "-") ; syntax and values depend on esmtp-keyword esmtp-value ::= 1*<any CHAR excluding "=", SP, and all control characters (US ASCII 0-31 inclusive)> Klensin, et al Standards Track [Page 7]
RFC 1869 SMTP Service Extensions November 1995 ; The following commands are extended to ; accept extended parameters. inner-esmtp-cmd ::= ("MAIL FROM:" reverse-path) / ("RCPT TO:" forward-path) All esmtp-keyword values must be registered as part of the IANA registration process described above. This definition only provides the framework for future extension; no extended MAIL FROM or RCPT TO parameters are defined by this RFC. 6.1. Error responses If the server SMTP does not recognize or cannot implement one or more of the parameters associated with a particular MAIL FROM or RCPT TO command, it will return code 555. If for some reason the server is temporarily unable to accomodate one or more of the parameters associated with a MAIL FROM or RCPT TO command, and if the definition of the specific parameter does not mandate the use of another code, it should return code 455. Errors specific to particular parameters and their values will be specified in the parameter's defining RFC. 7. Received: Header Field Annotation SMTP servers are required to add an appropriate Received: field to the headers of all messages they receive. A "with ESMTP" clause should be added to this field when any SMTP service extensions are used. "ESMTP" is hereby added to the list of standard protocol names registered with IANA. 8. Usage Examples (1) An interaction of the form: S: <wait for connection on TCP port 25> C: <open connection to server> S: 220 dbc.mtview.ca.us SMTP service ready C: EHLO ymir.claremont.edu S: 250 dbc.mtview.ca.us says hello ... indicates that the server SMTP implements only those SMTP commands which are defined as mandatory in [5]. Klensin, et al Standards Track [Page 8]
RFC 1869 SMTP Service Extensions November 1995 (2) In contrast, an interaction of the form: S: <wait for connection on TCP port 25> C: <open connection to server> S: 220 dbc.mtview.ca.us SMTP service ready C: EHLO ymir.claremont.edu S: 250-dbc.mtview.ca.us says hello S: 250-EXPN S: 250-HELP S: 250-8BITMIME S: 250-XONE S: 250 XVRB ... indicates that the server SMTP also implements the SMTP EXPN and HELP commands, one standard service extension (8BITMIME), and two nonstandard and unregistered service extensions (XONE and XVRB). (3) Finally, a server that does not support SMTP service extensions would act as follows: S: <wait for connection on TCP port 25> C: <open connection to server> S: 220 dbc.mtview.ca.us SMTP service ready C: EHLO ymir.claremont.edu S: 500 Command not recognized: EHLO ... The 500 response indicates that the server SMTP does not implement the extensions specified here. The client would normally send a HELO command and proceed as specified in RFC 821. See section 4.7 for additional discussion. 9. Security Considerations This RFC does not discuss security issues and is not believed to raise any security issues not already endemic in electronic mail and present in fully conforming implementations of RFC-821. It does provide an announcement of server mail capabilities via the response to the EHLO verb. However, all information provided by announcement of any of the initial set of service extensions defined by this RFC can be readily deduced by selective probing of the verbs required to transport and deliver mail. The security implications of service extensions described in other RFCs should be dealt with in those RFCs. Klensin, et al Standards Track [Page 9]
RFC 1869 SMTP Service Extensions November 1995 10. Acknowledgements This document represents a synthesis of the ideas of many people and reactions to the ideas and proposals of others. Randall Atkinson, Craig Everhart, Risto Kankkunen, and Greg Vaudreuil contributed ideas and text sufficient to be considered co-authors. Other important suggestions, text, or encouragement came from Harald Alvestrand, Jim Conklin, Mark Crispin, Frank da Cruz, 'Olafur Gudmundsson, Per Hedeland, Christian Huitma, Neil Katin, Eliot Lear, Harold A. Miller, Keith Moore, John Myers, Dan Oscarsson, Julian Onions, Rayan Zachariassen, and the contributions of the entire IETF SMTP Working Group. Of course, none of the individuals are necessarily responsible for the combination of ideas represented here. Indeed, in some cases, the response to a particular criticism was to accept the problem identification but to include an entirely different solution from the one originally proposed. 11. References [1] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821, USC/Information Sciences Institute, August 1982. [2] Crocker, D., "Standard for the Format of ARPA Internet Text Messages", STD 11, RFC 822, UDEL, August 1982. [3] Borenstein, N., and N. Freed, "Multipurpose Internet Mail Extensions", RFC 1521, Bellcore, Innosoft, September 1993. [4] Moore, K., "Representation of Non-ASCII Text in Internet Message Headers", RFC 1522, University of Tennessee, September 1993. [5] Braden, R., "Requirements for Internet Hosts - Application and Support", STD 3, RFC 1123, USC/Information Sciences Institute, October 1989. 12. Chair, Editor, and Author Addresses John Klensin, WG Chair MCI 2100 Reston Parkway Reston, VA 22091 Phone: +1 703 715-7361 Fax: +1 703 715-7436 EMail: klensin@mci.net Klensin, et al Standards Track [Page 10]
RFC 1869 SMTP Service Extensions November 1995 Ned Freed, Editor Innosoft International, Inc. 1050 East Garvey Avenue South West Covina, CA 91790 USA Phone: +1 818 919 3600 Fax: +1 818 919 3614 EMail: ned@innosoft.com Marshall T. Rose Dover Beach Consulting, Inc. 420 Whisman Court Moutain View, CA 94043-2186 USA Phone: +1 415 968 1052 Fax: +1 415 968 2510 EMail: mrose@dbc.mtview.ca.us Einar A. Stefferud Network Management Associates, Inc. 17301 Drey Lane Huntington Beach, CA, 92647-5615 USA Phone: +1 714 842 3711 Fax: +1 714 848 2091 EMail: stef@nma.com Dave Crocker Brandenburg Consulting 675 Spruce Dr. Sunnyvale, CA 94086 USA USA Phone: +1 408 246 8253 Fax: +1 408 249 6205 EMail: dcrocker@mordor.stanford.edu Klensin, et al Standards Track [Page 11]
========================================================================= Network Working Group J. Klensin, WG Chair Request For Comments: 1870 MCI STD: 10 N. Freed, Editor Obsoletes: 1653 Innosoft International, Inc. Category: Standards Track K. Moore University of Tennessee November 1995 SMTP Service Extension for Message Size Declaration Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. 1. Abstract This memo defines an extension to the SMTP service whereby an SMTP client and server may interact to give the server an opportunity to decline to accept a message (perhaps temporarily) based on the client's estimate of the message size. 2. Introduction The MIME extensions to the Internet message protocol provide for the transmission of many kinds of data which were previously unsupported in Internet mail. One expected result of the use of MIME is that SMTP will be expected to carry a much wider range of message sizes than was previously the case. This has an impact on the amount of resources (e.g. disk space) required by a system acting as a server. This memo uses the mechanism defined in [5] to define extensions to the SMTP service whereby a client ("sender-SMTP") may declare the size of a particular message to a server ("receiver-SMTP"), after which the server may indicate to the client that it is or is not willing to accept the message based on the declared message size and whereby a server ("receiver-SMTP") may declare the maximum message size it is willing to accept to a client ("sender-SMTP"). Klensin, et al Standards Track [Page 1]
RFC 1870 SMTP Size Declaration November 1995 3. Framework for the Size Declaration Extension The following service extension is therefore defined: (1) the name of the SMTP service extension is "Message Size Declaration"; (2) the EHLO keyword value associated with this extension is "SIZE"; (3) one optional parameter is allowed with this EHLO keyword value, a decimal number indicating the fixed maximum message size in bytes that the server will accept. The syntax of the parameter is as follows, using the augmented BNF notation of [2]: size-param ::= [1*DIGIT] A parameter value of 0 (zero) indicates that no fixed maximum message size is in force. If the parameter is omitted no information is conveyed about the server's fixed maximum message size; (4) one optional parameter using the keyword "SIZE" is added to the MAIL FROM command. The value associated with this parameter is a decimal number indicating the size of the message that is to be transmitted. The syntax of the value is as follows, using the augmented BNF notation of [2]: size-value ::= 1*20DIGIT (5) the maximum length of a MAIL FROM command line is increased by 26 characters by the possible addition of the SIZE keyword and value; (6) no additional SMTP verbs are defined by this extension. The remainder of this memo specifies how support for the extension affects the behavior of an SMTP client and server. 4. The Message Size Declaration service extension An SMTP server may have a fixed upper limit on message size. Any attempt by a client to transfer a message which is larger than this fixed upper limit will fail. In addition, a server normally has limited space with which to store incoming messages. Transfer of a message may therefore also fail due to a lack of storage space, but might succeed at a later time. Klensin, et al Standards Track [Page 2]
RFC 1870 SMTP Size Declaration November 1995 A client using the unextended SMTP protocol defined in [1], can only be informed of such failures after transmitting the entire message to the server (which discards the transferred message). If, however, both client and server support the Message Size Declaration service extension, such conditions may be detected before any transfer is attempted. An SMTP client wishing to relay a large content may issue the EHLO command to start an SMTP session, to determine if the server supports any of several service extensions. If the server responds with code 250 to the EHLO command, and the response includes the EHLO keyword value SIZE, then the Message Size Declaration extension is supported. If a numeric parameter follows the SIZE keyword value of the EHLO response, it indicates the size of the largest message that the server is willing to accept. Any attempt by a client to transfer a message which is larger than this limit will be rejected with a permanent failure (552) reply code. A server that supports the Message Size Declaration extension will accept the extended version of the MAIL command described below. When supported by the server, a client may use the extended MAIL command (instead of the MAIL command as defined in [1]) to declare an estimate of the size of a message it wishes to transfer. The server may then return an appropriate error code if it determines that an attempt to transfer a message of that size would fail. 5. Definitions The message size is defined as the number of octets, including CR-LF pairs, but not the SMTP DATA command's terminating dot or doubled quoting dots, to be transmitted by the SMTP client after receiving reply code 354 to the DATA command. The fixed maximum message size is defined as the message size of the largest message that a server is ever willing to accept. An attempt to transfer any message larger than the fixed maximum message size will always fail. The fixed maximum message size may be an implementation artifact of the SMTP server, or it may be chosen by the administrator of the server. The declared message size is defined as a client's estimate of the message size for a particular message. Klensin, et al Standards Track [Page 3]
RFC 1870 SMTP Size Declaration November 1995 6. The extended MAIL command The extended MAIL command is issued by a client when it wishes to inform a server of the size of the message to be sent. The extended MAIL command is identical to the MAIL command as defined in [1], except that a SIZE parameter appears after the address. The complete syntax of this extended command is defined in [5]. The esmtp-keyword is "SIZE" and the syntax for esmtp-value is given by the syntax for size-value shown above. The value associated with the SIZE parameter is a decimal representation of the declared message size in octets. This number should include the message header, body, and the CR-LF sequences between lines, but not the SMTP DATA command's terminating dot or doubled quoting dots. Only one SIZE parameter may be specified in a single MAIL command. Ideally, the declared message size is equal to the true message size. However, since exact computation of the message size may be infeasable, the client may use a heuristically-derived estimate. Such heuristics should be chosen so that the declared message size is usually larger than the actual message size. (This has the effect of making the counting or non-counting of SMTP DATA dots largely an academic point.) NOTE: Servers MUST NOT use the SIZE parameter to determine end of content in the DATA command. 6.1 Server action on receipt of the extended MAIL command Upon receipt of an extended MAIL command containing a SIZE parameter, a server should determine whether the declared message size exceeds its fixed maximum message size. If the declared message size is smaller than the fixed maximum message size, the server may also wish to determine whether sufficient resources are available to buffer a message of the declared message size and to maintain it in stable storage, until the message can be delivered or relayed to each of its recipients. A server may respond to the extended MAIL command with any of the error codes defined in [1] for the MAIL command. In addition, one of the following error codes may be returned: (1) If the server currently lacks sufficient resources to accept a message of the indicated size, but may be able to accept the message at a later time, it responds with code "452 insufficient system storage". Klensin, et al Standards Track [Page 4]
RFC 1870 SMTP Size Declaration November 1995 (2) If the indicated size is larger than the server's fixed maximum message size, the server responds with code "552 message size exceeds fixed maximium message size". A server is permitted, but not required, to accept a message which is, in fact, larger than declared in the extended MAIL command, such as might occur if the client employed a size-estimation heuristic which was inaccurate. 6.2 Client action on receiving response to extended MAIL command The client, upon receiving the server's response to the extended MAIL command, acts as follows: (1) If the code "452 insufficient system storage" is returned, the client should next send either a RSET command (if it wishes to attempt to send other messages) or a QUIT command. The client should then repeat the attempt to send the message to the server at a later time. (2) If the code "552 message exceeds fixed maximum message size" is received, the client should immediately send either a RSET command (if it wishes to attempt to send additional messages), or a QUIT command. The client should then declare the message undeliverable and return appropriate notification to the sender (if a sender address was present in the MAIL command). A successful (250) reply code in response to the extended MAIL command does not constitute an absolute guarantee that the message transfer will succeed. SMTP clients using the extended MAIL command must still be prepared to handle both temporary and permanent error reply codes (including codes 452 and 552), either immediately after issuing the DATA command, or after transfer of the message. 6.3 Messages larger than the declared size. Once a server has agreed (via the extended MAIL command) to accept a message of a particular size, it should not return a 552 reply code after the transfer phase of the DATA command, unless the actual size of the message transferred is greater than the declared message size. A server may also choose to accept a message which is somewhat larger than the declared message size. A client is permitted to declare a message to be smaller than its actual size. However, in this case, a successful (250) reply code is no assurance that the server will accept the message or has sufficient resources to do so. The server may reject such a message after its DATA transfer. Klensin, et al Standards Track [Page 5]
RFC 1870 SMTP Size Declaration November 1995 6.4 Per-recipient rejection based on message size. A server that implements this extension may return a 452 or 552 reply code in response to a RCPT command, based on its unwillingness to accept a message of the declared size for a particular recipient. (1) If a 452 code is returned, the client may requeue the message for later delivery to the same recipient. (2) If a 552 code is returned, the client may not requeue the message for later delivery to the same recipient. 7. Minimal usage A "minimal" client may use this extension to simply compare its (perhaps estimated) size of the message that it wishes to relay, with the server's fixed maximum message size (from the parameter to the SIZE keyword in the EHLO response), to determine whether the server will ever accept the message. Such an implementation need not declare message sizes via the extended MAIL command. However, neither will it be able to discover temporary limits on message size due to server resource limitations, nor per-recipient limitations on message size. A minimal server that employs this service extension may simply use the SIZE keyword value to inform the client of the size of the largest message it will accept, or to inform the client that there is no fixed limit on message size. Such a server must accept the extended MAIL command and return a 552 reply code if the client's declared size exceeds its fixed size limit (if any), but it need not detect "temporary" limitations on message size. The numeric parameter to the EHLO SIZE keyword is optional. If the parameter is omitted entirely it indicates that the server does not advertise a fixed maximum message size. A server that returns the SIZE keyword with no parameter in response to the EHLO command may not issue a positive (250) response to an extended MAIL command containing a SIZE specification without first checking to see if sufficient resources are available to transfer a message of the declared size, and to retain it in stable storage until it can be relayed or delivered to its recipients. If possible, the server should actually reserve sufficient storage space to transfer the message. Klensin, et al Standards Track [Page 6]
RFC 1870 SMTP Size Declaration November 1995 8. Example The following example illustrates the use of size declaration with some permanent and temporary failures. S: <wait for connection on TCP port 25> C: <open connection to server> S: 220 sigurd.innosoft.com -- Server SMTP (PMDF V4.2-6 #1992) C: EHLO ymir.claremont.edu S: 250-sigurd.innosoft.com S: 250-EXPN S: 250-HELP S: 250 SIZE 1000000 C: MAIL FROM:<ned@thor.innosoft.com> SIZE=500000 S: 250 Address Ok. C: RCPT TO:<ned@innosoft.com> S: 250 ned@innosoft.com OK; can accomodate 500000 byte message C: RCPT TO:<ned@ymir.claremont.edu> S: 552 Channel size limit exceeded: ned@YMIR.CLAREMONT.EDU C: RCPT TO:<ned@hmcvax.claremont.edu> S: 452 Insufficient channel storage: ned@hmcvax.CLAREMONT.EDU C: DATA S: 354 Send message, ending in CRLF.CRLF. ... C: . S: 250 Some recipients OK C: QUIT S: 221 Goodbye 9. Security Considerations The size declaration extensions described in this memo can conceivably be used to facilitate crude service denial attacks. Specifically, both the information contained in the SIZE parameter and use of the extended MAIL command make it somewhat quicker and easier to devise an efficacious service denial attack. However, unless implementations are very weak, these extensions do not create any vulnerability that has not always existed with SMTP. In addition, no issues are addressed involving trusted systems and possible release of information via the mechanisms described in this RFC. 10. Acknowledgements This document was derived from an earlier Working Group work in progess contribution. Jim Conklin, Dave Crocker, Neil Katin, Eliot Lear, Marshall T. Rose, and Einar Stefferud provided extensive comments in response to earlier works in progress of both this and the previous memo. Klensin, et al Standards Track [Page 7]
RFC 1870 SMTP Size Declaration November 1995 11. References [1] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821, USC/Information Sciences Institute, August 1982. [2] Crocker, D., "Standard for the Format of ARPA Internet Text Messages", STD 11, RFC 822, UDEL, August 1982. [3] Borenstein, N., and N. Freed, "Multipurpose Internet Mail Extensions", RFC 1521, Bellcore, Innosoft, September 1993. [4] Moore, K., "Representation of Non-ASCII Text in Internet Message Headers", RFC 1522, University of Tennessee, September 1993. [5] Klensin, J., Freed, N., Rose, M., Stefferud, E., and D. Crocker, "SMTP Service Extensions", STD 11, RFC 1869, MCI, Innosoft International, Inc., Dover Beach Consulting, Inc., Network Management Associates, Inc., Brandenburg Consulting, November 1995. [6] Partridge, C., "Mail Routing and the Domain System", STD 14, RFC 974, BBN, January 1986. Klensin, et al Standards Track [Page 8]
RFC 1870 SMTP Size Declaration November 1995 12. Chair, Editor, and Author Addresses John Klensin, WG Chair MCI 2100 Reston Parkway Reston, VA 22091 Phone: +1 703 715-7361 Fax: +1 703 715-7436 EMail: klensin@mci.net Ned Freed, Editor Innosoft International, Inc. 1050 East Garvey Avenue South West Covina, CA 91790 USA Phone: +1 818 919 3600 Fax: +1 818 919 3614 EMail: ned@innosoft.com Keith Moore Computer Science Dept. University of Tennessee 107 Ayres Hall Knoxville, TN 37996-1301 USA EMail: moore@cs.utk.edu Klensin, et al Standards Track [Page 9]